Exercises for Algebra II Series 5 To hand in at 19.9.2014 in class

Exercise 1.

Calculate the Galois groups of the splitting fields of the following polynomials over \mathbb{Q} .

- 1. $f_1 = T^3 1;$
- 2. $f_2 = T^3 2;$
- 3. $f_3 = T^3 + T^2 2T 1$.

Hint: If ζ is a 7-th root of 1 (different from 1), then $\zeta^i + \zeta^{7-i}$ is a root of f_3 for i = 1, 2, 3.

Exercise 2.

Show that $\mathbb{Q}[\sqrt{2}, i]/\mathbb{Q}$ is Galois. What is the Galois group? Describe (again) all intermediate extensions of $\mathbb{Q}[\sqrt{2}, i]/\mathbb{Q}$.

Exercise 3.

Let L be the splitting field of $f = T^4 - 3$ over \mathbb{Q} . What is the Galois group of L/\mathbb{Q} ? Make a diagram of all subgroups of $\operatorname{Gal}(L/K)$ that illustrates which subgroups are contained in others.

Exercise 4.

- 1. Find a finite separable (but not normal) field extension L/K that does not satisfy the Galois correspondence.
- 2. Find a finite normal (but not separable) field extension L/K that does not satisfy the Galois correspondence.
- 3. (Bonus) Find a normal and separable (but not finite) field extension L/K that does not satisfy the Galois correspondence.