Exercises for Algebra II
Series 5
To hand in at 19.9.2014 in class

Instituto Nacional de Matemática Pura e Aplicada
Oliver Lorscheid (professor)
José Ramón Madrid Padilla (monitor)

Exercise 1.

Calculate the Galois groups of the splitting fields of the following polynomials over \mathbb{Q}.

1. $f_{1}=T^{3}-1$;
2. $f_{2}=T^{3}-2$;
3. $f_{3}=T^{3}+T^{2}-2 T-1$.

Hint: If ζ is a 7 -th root of 1 (different from 1), then $\zeta^{i}+\zeta^{7-i}$ is a root of f_{3} for $i=1,2,3$.

Exercise 2.

Show that $\mathbb{Q}[\sqrt{2}, i] / \mathbb{Q}$ is Galois. What is the Galois group? Describe (again) all intermediate extensions of $\mathbb{Q}[\sqrt{2}, i] / \mathbb{Q}$.

Exercise 3.

Let L be the splitting field of $f=T^{4}-3$ over \mathbb{Q}. What is the Galois group of L / \mathbb{Q} ? Make a diagram of all subgroups of $\operatorname{Gal}(L / K)$ that illustrates which subgroups are contained in others.

Exercise 4.

1. Find a finite separable (but not normal) field extension L / K that does not satisfy the Galois correspondence.
2. Find a finite normal (but not separable) field extension L / K that does not satisfy the Galois correspondence.
3. (Bonus) Find a normal and separable (but not finite) field extension L / K that does not satisfy the Galois correspondence.
