Exercises for Algebra II	Instituto	Nacional de Matemática Pura e Aplicada
Series 4		Oliver Lorscheid (professor)
To hand in at 12.9.2014 in the exerc	cise class	José Ramón Madrid Padilla (monitor)

Exercise 1.

Let L/K be a finite field extension and $p = \operatorname{char} K > 0$. Show that the inseparable degree $[L:K]_i$ is a power of p. Show further that for a tower of extensions L/E/K, we have $[L:K]_i = [L:E]_i : [E:K]_i$.

Exercise 2.

Find the splitting field L of $f = T^3 - 2 \in \mathbb{Q}[T]$. Which degree has L/\mathbb{Q} ? Is $L = K[\sqrt[3]{2}]$?

Exercise 3.

Find all intermediate extensions of $\mathbb{Q}[\sqrt{2}, i]/\mathbb{Q}$ where *i* is a square root of -1.

Exercise 4.

- 1. Consider the purely transcendental extension $K = \mathbb{F}_3(x)/\mathbb{F}_3$ of transcendence degree 1, and let \overline{K} be an algebraic closure of K. Let $a \in \overline{K}$ be a root of $f = T^3 x$ and $b \in \overline{K}$ a root of $g = T^2 2$. Find the separable closure E of K in K(a, b). What are the degrees [K(a, b) : E] and [E : K]? What are the corresponding separable degrees and inseparable degrees?
- 2. Consider the purely transcendental extension $K = \mathbb{F}_3(x, y)/\mathbb{F}_3$ of transcendence degree 2, and let \overline{K} be an algebraic closure of K. Let $a \in \overline{K}$ be a root of $f = T^3 - x$ and $b \in \overline{K}$ a root of $g = T^3 - y$. Show that every element c of K(a, b) generates an extension K(c)/K of degree at most 3. Conclude that K(a, b)/K has infinitely many different intermediate fields, and that K(a, b) cannot be generated by one element over K.