Exercises for Algebra IIInstituto Nacional de Matemática Pura e AplicadaSeries 3Oliver Lorscheid (professor)To hand in at 5.9.2014 in the exercise classJosé Ramón M. P. (monitor)

Exercise 1.

Which of the following polynomials is irreducible, which is separable?

- 1. $f(T) = T^p 1$ in $\mathbb{F}_p[T]$.
- 2. $f(T) = T^p x$ in $\mathbb{F}_p(x)[T]$ where x is a transcendental element over \mathbb{F}_p .

Exercise 2.

Let δ be a square root of $\overline{2} \in \mathbb{F}_3$ in the algebraic closure $\overline{\mathbb{F}_3}$ of \mathbb{F}_3 . Show that $\mathbb{F}_3(\delta) = \{a + b\delta | a, b \in \mathbb{F}_3\}$ and that $\mathbb{F}_3(\delta)/\mathbb{F}_3$ is separable.

Exercise 3.

Let x be a transcendental element over K and $\operatorname{Aut}_{K}(K(x))$ the group of field isomorphisms $f : K(x) \to K(x)$ that fix every element of K. Let $\operatorname{GL}_{2}(K)$ be the group of invertible 2×2 -matrices with coefficients in K and let $T = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} | a \in K^{\times} \right\}$ be the subgroup of central matrices. Show that $\operatorname{Aut}_{K}(K(x))$ is isomorphic to $\operatorname{GL}_{2}(K)/T$.

Exercise 4.

Let K be an algebraically closed field. Let $P(X,Y) \in K[X,Y]$ be an irreducible polynomial and $C = \{(x,y) \in K^2 | P(x,y) = 0\}$ the corresponding planar curve. Assume that there is a rational map $\varphi : K \to C$ of degree n, i.e. (1) $\varphi(t) = (a(t), b(t))$ with $a(T), b(T) \in K(T)$, which is defined for all but finitely many $t \in K$, and (2) for all but finitely many $(x,y) \in C$, the cardinality of $\varphi^{-1}(x,y)$ is n. Show with help of the theorem of Lüroth that C is a rational curve, i.e. there exists a rational map $\psi : K \to C$ of degree 1.