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Exercise 1.
Which of the following polynomials is irreducible, which is separable?

1. f(T ) = T p − 1 in Fp[T ].

2. f(T ) = T p − x in Fp(x)[T ] where x is a transcendental element over Fp.

Exercise 2.
Let δ be a square root of 2 ∈ F3 in the algebraic closure F3 of F3. Show that F3(δ) =
{a+ bδ|a, b ∈ F3} and that F3(δ)/F3 is separable.

Exercise 3.
Let x be a transcendental element over K and AutK(K(x)) the group of field isomor-
phisms f : K(x) → K(x) that fix every element of K. Let GL2(K) be the group of
invertible 2 × 2-matrices with coefficients in K and let T =

{(
a 0
0 a

)∣∣a ∈ K×} be the
subgroup of central matrices. Show that AutK(K(x)) is isomorphic to GL2(K)/T .

Exercise 4.
Let K be an algebraically closed field. Let P (X,Y ) ∈ K[X,Y ] be an irreducible poly-
nomial and C = {(x, y) ∈ K2|P (x, y) = 0} the corresponding planar curve. Assume
that there is a rational map ϕ : K → C of degree n, i.e. (1) ϕ(t) = (a(t), b(t)) with
a(T ), b(T ) ∈ K(T ), which is defined for all but finitely many t ∈ K, and (2) for all but
finitely many (x, y) ∈ C, the cardinality of ϕ−1(x, y) is n. Show with help of the theorem
of Lüroth that C is a rational curve, i.e. there exists a rational map ψ : K → C of degree
1.


