Exercises for Algebra II
Series 3
To hand in at 5.9.2014 in the exercise class

Oliver Lorscheid (professor)
José Ramón M. P. (monitor)

Exercise 1.

Which of the following polynomials is irreducible, which is separable?

1. $f(T)=T^{p}-1$ in $\mathbb{F}_{p}[T]$.
2. $f(T)=T^{p}-x$ in $\mathbb{F}_{p}(x)[T]$ where x is a transcendental element over \mathbb{F}_{p}.

Exercise 2.

Let δ be a square root of $\overline{2} \in \mathbb{F}_{3}$ in the algebraic closure $\overline{\mathbb{F}_{3}}$ of \mathbb{F}_{3}. Show that $\mathbb{F}_{3}(\delta)=$ $\left\{a+b \delta \mid a, b \in \mathbb{F}_{3}\right\}$ and that $\mathbb{F}_{3}(\delta) / \mathbb{F}_{3}$ is separable.

Exercise 3.

Let x be a transcendental element over K and $\operatorname{Aut}_{K}(K(x))$ the group of field isomorphisms $f: K(x) \rightarrow K(x)$ that fix every element of K. Let $\mathrm{GL}_{2}(K)$ be the group of invertible 2×2-matrices with coefficients in K and let $T=\left\{\left.\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right) \right\rvert\, a \in K^{\times}\right\}$be the subgroup of central matrices. Show that $\operatorname{Aut}_{K}(K(x))$ is isomorphic to $\mathrm{GL}_{2}(K) / T$.

Exercise 4.

Let K be an algebraically closed field. Let $P(X, Y) \in K[X, Y]$ be an irreducible polynomial and $C=\left\{(x, y) \in K^{2} \mid P(x, y)=0\right\}$ the corresponding planar curve. Assume that there is a rational $\operatorname{map} \varphi: K \rightarrow C$ of degree n, i.e. (1) $\varphi(t)=(a(t), b(t))$ with $a(T), b(T) \in K(T)$, which is defined for all but finitely many $t \in K$, and (2) for all but finitely many $(x, y) \in C$, the cardinality of $\varphi^{-1}(x, y)$ is n. Show with help of the theorem of Lüroth that C is a rational curve, i.e. there exists a rational map $\psi: K \rightarrow C$ of degree 1.

