Exercises for Algebra IIInstituto Nacional de Matemática Pura e AplicadaSeries 2Oliver Lorscheid (professor)To hand in at 27.8.2014 in classJosé Ramón M. P. (monitor)

Exercise 1.

Let L = K(a) where a is algebraic over K and L/K is of odd degree. Show that $L = K(a^2)$.

Exercise 2.

Proof "Fermat's small theorem": If K is a field of characteristic p, then $(a+b)^p = a^p + b^p$. Conclude that $\operatorname{Frob}_p : K \to K$ with $\operatorname{Frob}_p(a) = a^p$ is a field homomorphism.

[Remark: $Frob_p$ is called the Frobenius homomorphism in characteristic p.]

Exercise 3.

Let $f = X^6 + X^3 + 1 \in \mathbb{Q}[T]$ and $L = \mathbb{Q}[T]/(f)$. Show that f is irreducible and find all field homomorphisms $L \to \mathbb{C}$.

[*Hint:* f(X) divides $X^9 - 1$.]

Exercise 4.

Let L/E and E/K be field extensions with transcendental bases $S \subset L$ and $T \subset E$, respectively. Show that $S \cup T$ is a transcendental basis for L/K and conclude that the transcendental degree is additive for towers of field extensions $K_0 \subset K_1 \subset \cdots \subset K_n$.