Exercises for Algebra II	Instituto	Nacional de Matemática Pura e Aplicada
Series 12		Oliver Lorscheid (professor)
To hand in at 21.11.2014 in the exe	ercise class	José Ramón Madrid Padilla (monitor)

Exercise 1.

Let F = K(T) be a rational function field over K. Show that $Cl^0 F$ is the trivial group.

Exercise 2.

Let F/K be a function field of dimension 1.

- 1. Let D a divisor and $P = 1 \cdot v$ a prime divisor. Show that $f/g \in \mathcal{O}_v$ if $f, g \in L(D+P)$, but $g \notin L(D)$.
- 2. Conclude that $l(D+P) \leq l(D) + \deg P$.
- 3. Show that l(D) is finite for every divisor D.

Exercise 3.

Let F/K be a function field of dimension 1. Show that for every divisor D, the number of effective divisors in $[D] \in \operatorname{Cl} F$ is $(q^{l(D)} - 1)/(q - 1)$.

Exercise 4. Let F be the fraction field of $A = \mathbb{F}_3[X, Y]/(Y^2 - X^3 + X)$, which is a function field of dimension 1 over \mathbb{F}_3 . Show that $\operatorname{Cl}^0 F$ has precisely 4 elements.

Hint: Use without proof that the genus of F is g = 1. Then use the result of the previous exercise, combined with the arguments of the proof for the finiteness of the class number, to establish a relationship between $\operatorname{Cl}^0(F)$ and the places of degree 1 of F. Finally use the inclusion $\mathbb{F}_3[X] \subset A$ to show that the places of F whose restriction to $\mathbb{F}_3(X)$ is not v_{∞} correspond to the homomorphisms $A \to \mathbb{F}_3$, while v_{∞} has only one extension to F. Then count the homomorphisms $A \to \mathbb{F}_3$, i.e. solutions of $Y^2 - X^3 + X = 0$ with $X, Y \in \mathbb{F}_3$.