Exercises for Algebra II Series 11 Instituto Nacional de Matemática Pura e Aplicada Oliver Lorscheid (professor)

To hand in at 14.11.2014 in the exercise class — José Ramón Madrid Padilla (monitor)

Exercise 1.

Show that

- 1. the 2-adic absolute value $|\cdot|_2: \mathbb{Q} \to \mathbb{R}_{\geq 0}$ has precisely one extension $|\cdot|$ to $\mathbb{Q}(i)$ with residue field \mathbb{F}_2 such that $|\mathbb{Q}|_2$ is a subgroup of $|\mathbb{Q}(i)|$ of order 2;
- 2. the 3-adic absolute value $|\cdot|_3: \mathbb{Q} \to \mathbb{R}_{\geq 0}$ has precisely two extensions $|\cdot|$ and $|\cdot|'$ to $\mathbb{Q}(i)$, both with residue field \mathbb{F}_2 and value group $|\mathbb{Q}(i)| = |\mathbb{Q}(i)|' = |\mathbb{Q}|_3$;
- 3. the 5-adic absolute value $|\cdot|_5: \mathbb{Q} \to \mathbb{R}_{\geq 0}$ has precisely one extension $|\cdot|$ to $\mathbb{Q}(i)$ with residue field \mathbb{F}_4 and value group $|\mathbb{Q}(i)| = |\mathbb{Q}|_3$.

Hint: You can use without proof that $\mathbb{Z}[i]$ is a Euclidean domain w.r.t. the Euclidean function $f(a+ib) = \sqrt{a^2 + b^2}$. This implies that $\mathbb{Z}[i]$ is a principal ideal domain and a factorial ring. Therefore the extensions of $|\cdot|_2$, $|\cdot|_3$ and $|\cdot|_5$ to $\mathbb{Q}(i)$ can be studied in terms of the prime factorizations of 2, 3 and 5 in $\mathbb{Z}[i]$.

Exercise 2.

Show that the completion of $\mathbb{Q}(i)$ w.r.t. to the extensions of $|\cdot|_2$ and $|\cdot|_5$ to $\mathbb{Q}(i)$ are quadratic field extension of \mathbb{Q}_2 and \mathbb{Q}_5 , respectively. Show that the completion of $\mathbb{Q}(i)$ w.r.t. either extension of $|\cdot|_3$ to $\mathbb{Q}(i)$ is \mathbb{Q}_3 .

Exercise 3.

Let v be a valuation of degree d of the rational function field $\mathbb{F}_q(T)$. Show that the completion of v is isomorphic to $\mathbb{F}_{q^d}(T)$ as a field.

Exercise 4.

Show that the equation $x^2 + y^2 = 3$ has no solution in \mathbb{Q} , i.e. there exists no $(x, y) \in \mathbb{Q}$ such that $x^2 + y^2 = 3$.

Hint: Show that the equation $x^2 + y^2 = 3z^2$ has no solution in \mathbb{Z}_2 such that x, y, z are coprime. Use this to deduce that $x^2 + y^2 = 3$ has no solution in $x, y \in \mathbb{Q}_2$, and thus not in \mathbb{Q} .

*Exercise 5 (Additional exercise for those who want to understand how local fields can be used to understand global fields).

Let p be a prime number and $f \in \mathbb{Q}[T]$ be an irreducible polynomial of degree p. Assume that f has precisely p-2 roots in a completion L of \mathbb{Q} w.r.t. to a non-trivial absolute value. Show that $\operatorname{Gal}(K/\mathbb{Q}) \simeq S_p$ where K is the splitting field of f over \mathbb{Q} . Use this to determine the Galois group of the splitting field of $f = X^5 - 6X + 2$ over \mathbb{Q} .

Hint: Use Sylow's theorem to conclude that $Gal(K/\mathbb{Q})$ contains a p-cycle, and use the assumption on the roots of f in L to show that $Gal(K/\mathbb{Q})$ contains a 2-cycle.