Towards a cohomological understanding of the tropical Riemann-Roch theorem

Oliver Lorscheid

Part 1: Tropical Riemann-Roch, aka Baker-Norine theory

Divisors on graphs

Let G be a graph with vertex set V. A **divisor** on G is an element of the abelian group

$$\mathsf{Div}\; G \;=\; \mathbb{Z}^V,$$

which we typically write as a formal linear combination $D = \sum D_v v$ of vertices $v \in V$ where $D_v = D(v)$.

A **principal divisor** in G is a divisor in the image of the group homomorphism

$$\mathsf{div}: \ \mathbb{Z}^V \ \longrightarrow \ \mathbb{Z}^V,$$

that sends an element $f \in \mathbb{Z}^V$ to the divisor $\operatorname{div}(f) = \sum df_v v$ with

$$df_v = \sum_{\text{edges } v-w} (f(w) - f(v)).$$

The rank

A divisor $D = \sum D_v v$ on G is effective is $D_v \ge 0$ for all $v \in V$. We define $r_G(D) = 0$ if $D + \operatorname{div}(f)$ is *not* effective for any $f \in \mathbb{Z}^V$. We define recursively

$$r_G(D) = 1 + \min \left\{ r_G(D-v) \, \big| \, v \in V \right\}$$

 $\text{ if } D + {\rm div}(f) \text{ is effective for some } f \in \mathbb{Z}^V.$

The number $r_G(D)$ is called the **rank** of D.

Tropical Riemann-Roch

The degree of a divisor $D = \sum D_v v$ on G is deg $(D) = \sum D_v$. The genus of G is its first Betti number

$$g = h_1(G,\mathbb{Z}) = \#\{edges\} - \#V + 1.$$

The canonical divisor of G is the divisor $K = \sum K_v v$ on G with

$$K_{v} = \# \big\{ \text{ edges } v - w \big\} - 2.$$

Theorem (Baker-Norine 06) Let D be a divisor on G. Then

$$r_G(D) - r_G(K - D) = \deg(D) + 1 - g.$$

Remark: Gathmann-Kerber and Mikhalkin-Zharkov have deduced from this theorem a version for metric graphs.

The specialization lemma

Let k be a field with discrete absolute value $v : k \to \mathbb{R}_{\geq 0}$, valuation ring $R \subsetneq k$ and residue field k_0 .

Let X be a smooth projective curve over k and \mathcal{X} a *strictly semistable R-model* of X, i.e. an *R*-scheme whose generic fibre \mathcal{X}_k is isomorphic to X and whose special fibre \mathcal{X}_0 consists of transversally intersecting smooth curves over k_0 .

Let G be the *dual graph* of \mathcal{X}_0 whose vertices correspond to the irreducible components of \mathcal{X}_0 and whose edges correspond to the nodes of \mathcal{X}_0 .

Taking the Zariski closure in \mathcal{X} of a divisor D of X induces a group homomorphism trop : Div $X \rightarrow$ Div G.

Theorem (Baker 07)

Let D be a divisor of rank $r_X(D)$ on X. Then $r_X(D) \le r_G(\operatorname{trop}(D))$.

Remark: This theory has applications in Brill-Noether theory.

Part 2: Towards a cohomological interpretation of the tropical Riemann-Roch theorem

Endowing G with a scheme structure

We recall the context:

- ▶ a field *k* with discrete valuation $v : k \rightarrow \mathbb{R}_{\geq 0}$;
- its valuation ring R and residue field k₀;
- a smooth projective curve X over k;
- a strictly semistable R-model \mathcal{X} of X;
- ▶ the dual graph G of X_0 .

We denote by $\mathbb{R}_{\geq 0}^{\max}$ the **tropical semifield** (using the Berkovich convention), which is $\mathbb{R}_{\geq 0}$ together with the usual multiplication and the addition

$$a+b=\max\{a,b\}.$$

The subsemiring S = [0, 1] of $\mathbb{R}_{\geq 0}^{\max}$ is the semiring of tropical integers.

A picture

Remarks

- In joint work with Martin Ulirsch (in progress), we can make sense of the "Kato fan" and its tropicalization within the theory of ordered blue schemes.
- Sets of cocycles for tropical schemes (i.e. schemes over ℝ_{≥0}^{max}) form naturally tropical linear spaces, aka valuated matroids. For S-schemes, we need a notion of matroid bundles.

Part 3: The tropical hyperfield

An intuitive definition

The **tropical hyperfield** is $\mathbb{R}_{\geq 0}$ together with the usual multiplication and the *hyperaddition*

$$a \boxplus b = \begin{cases} \{\max\{a, b\}\} & \text{if } a \neq b; \\ [0, a] & \text{if } a = b. \end{cases}$$

Note that

0 ⊞ a = a ⊞ 0 = {a} for all a (neutral element);
0 ∈ a ⊞ b if and only if b = a (additive inverses);
c ∈ a ⊞ b if and only if the maximum occurs twice among a, b, c (tropical equality).

Part 4: Ordered blueprints

The definition

An ordered blueprint is a triple $B = (B^{\bullet}, B^+, \leq)$ where

- B^+ is a semiring (commutative with 0 and 1);
- B[•] ⊂ B⁺ is a multiplicative subset that generates B⁺ as a semiring and contains 0 and 1;
- ► ≤ is a partial order on B⁺ that is additive and multiplicative, i.e. x ≤ y implies x + z ≤ y + z and xz ≤ yz.

We call B^+ the **ambient semiring** and B^\bullet the **underlying** monoid of B. We write $a \in B$ for $a \in B^\bullet$.

Given a subset S of $B^+ \times B^+$, we denote by $\langle S \rangle$ the smallest additive and multiplicative partial order on B^+ .

A morphism of ordered blueprints is a multiplicative map $f: B_1 \to B_2$ that extends (necessarily uniquely) to an order-preserving semiring homomorphism $f^+: B_1^+ \to B_2^+$.

This defines the category OBIpr of ordered blueprints. It is closed, complete and cocomplete and contains free objects.

Examples

▶
$$\mathbb{F}_1 = (\{0,1\}, \mathbb{N}, =)$$
 (initial object)
▶ $\mathbb{B} = (\{0,1\}, (\{0,1\}, \max, \cdot), =)$ (Boolean semifield)
▶ $\mathbb{K} = (\{0,1\}, \mathbb{N}, \langle 0 \le 1+1, 1 \le 1+1 \rangle)$ (Krasner hyperfield)
▶ $\mathbb{T} = (\mathbb{R}_{\ge 0}, \mathbb{N}[\mathbb{R}_{>0}], \langle c \le a+b|c \in a \boxplus b \rangle)$ (tropical hyperfield)

Fact

For $a_1, \ldots, a_n, b \in \mathbb{T}$, we have $b \leq \sum a_i$ if and only if the maximum occurs twice among a_1, \ldots, a_n, b .

► A field k defines the ordered blueprint

$$\mathbf{k} = (k, \mathbb{N}[k^{\times}], \langle c \leq a + b | c = a + b \text{ in } k \rangle).$$

Part 5: Scheme theory for ordered blueprints

Let B be an ordered blueprint. The **unit group** of B is the group B^{\times} of multiplicatively invertible elements of B.

Fact

Let $S \subset B$ be a multiplicative subset. Then there exists a universal morphism $\iota_S : B \to S^{-1}B$ among all morphisms $f : B \to C$ such that $f(S) \subset C^{\times}$, which we call the localization of B at S.

For $h \in B$, we define $B[h^{-1}] = S^{-1}B$ where $S = \{h^i\}_{i \in \mathbb{N}}$. We call $\iota_h = \iota_S : B \to B[h^{-1}]$ the localization of B at h.

Ordered blue schemes

Let $Aff = OBIpr^{op}$. We denote the anti-equivalence of OBIpr with its opposite category by

 $\mathsf{Spec}: \mathsf{OBIpr} \longrightarrow \mathsf{Aff}.$

Given a morphism $f : B \to C$ of ordered blueprints, we write $f^* : \text{Spec } C \to \text{Spec } B$ for the opposite morphism in Aff.

A principal open immersion is a morphism in Aff of the form ι_h^* : Spec $B[h^{-1}] \rightarrow \text{Spec } B$.

Let \mathcal{T} be the Grothendieck pretopology on Aff that is generated by families of principal open immersions $\left\{\operatorname{Spec} B[h_i^{-1}] \to \operatorname{Spec} B\right\}_{i \in I}$ that are contained in the canonical topology of Aff.

An ordered blue scheme is the colimit of a "monodromy-free" diagram of principal open immersions in the category of sheaves Sh(Aff, T) on the site (Aff, T).

Geometric points

Taking geometric points of the slice category over an ordered blue scheme X in Sh(Aff, \mathcal{T}) allows us to identify X with a topological space \underline{X} together with a structure sheaf \mathcal{O}_X in OBlpr.

In the case of an affine ordered blue scheme X = Spec B, where we identify Aff with its essential image under the Yoneda embedding Aff \rightarrow Sh(Aff, T), the points of the underlying topological space of Spec B correspond to the *prime ideals* of Spec B, which are subsets p of B such that

▶
$$0 \in \mathfrak{p}$$
,

$$\blacktriangleright \mathfrak{p} \cdot B = \mathfrak{p}, \text{ and }$$

• S = B - p is a multiplicative subset.

Part 6: Tropicalization as a base change

Nonarchimedean absolute values as morphisms

Let k be a field. Recall the definitions of the associated ordered blueprint

$$\mathbf{k} = \left(k, \mathbb{N}[k^{\times}], \langle c \leq a+b | c = a+b \text{ in } k \rangle \right)$$

and the tropical hyperfield

$$\mathbb{T} \;=\; \Big(\mathbb{R}_{\geq 0},\,\mathbb{N}[\mathbb{R}_{> 0}],\,\langle c\leq a+b|c\in a\boxplus b
angle\Big).$$

Fact

A map $v : k \to \mathbb{R}_{\geq 0}$ is a nonarchimedean absolute value if and only if it is a morphism $v : k \to \mathbb{T}$ of ordered blueprints.

Blue models

Let $X = \operatorname{Spec} R$ be an affine k-scheme with a choice of coordinates, by which we mean a closed immersion $\iota : X \to \operatorname{Spec} k[A]$ into a toric variety where A is a suitable monoid (commutative, fine and saturated). Let $\pi : k[A] \to R$ the surjection of coordinate rings. We associate with ι the ordered blue scheme $\mathbb{X} = \operatorname{Spec} B$ where

$$B = \left(\left\{ ca \, \middle| \, c \in k, a \in A \right\}, \, \mathbb{N}[k^{\times} \times A], \leq \right)$$

whose partial order \leq is generated by the relations $db \leq \sum c_i a_i$ for which $\pi(db) = \pi(\sum c_i a_i)$ in R.

The morphism $\mathbf{k} \to B$ that sends c to $c \cdot 1$ endows \mathbb{X} with the structure of an ordered blue **k**-scheme. We call \mathbb{X} a **blue model** of X.

Tropicalization as a base change

The scheme theoretic tropicalization of X (with respect to ι) is the \mathbb{T} -scheme

$$\mathbb{X}^{\mathsf{trop}} = \mathbb{X} \times_{\mathbf{k}} \mathbb{T} = \operatorname{Spec} \left(B \otimes_{\mathbf{k}} \mathbb{T} \right)$$

where $B \otimes_{\mathbf{k}} \mathbb{T}$ is the colimit of $B \longleftarrow \mathbf{k} \stackrel{\mathbf{v}}{\longrightarrow} \mathbb{T}$.

The set theoretic tropicalization of X (with respect to ι) is

$$X^{\text{trop}} = \left\{ f : A \to \mathbb{R}_{\geq 0} \middle| \begin{array}{c} \text{for all } \sum c_i a_i \in \ker \pi \text{ with } c_i \in k, \ a_i \in A, \\ \{v(c_i)f(a_i)\} \text{ assumes the maximum twice} \end{array} \right\}$$

Theorem (L'19)

The composition with the natural map $A \to B \otimes_{\mathbf{k}} \mathbb{T}$, sending a to $(1 \cdot a) \otimes 1$, defines a bijection

$$\mathbb{X}^{\mathrm{trop}}(\mathbb{T}) = \mathrm{Hom}_{\mathbb{T}}(B \otimes_{\mathbf{k}} \mathbb{T}, \mathbb{T}) \longrightarrow X^{\mathrm{trop}}.$$

Recovering the Giansiracusa tropicalization

In their seminal paper on tropical scheme theory, Jeff and Noah Giansiracusa introduce an $\mathbb{R}_{\geq 0}^{\max}$ -scheme that represents X^{trop} in terms of the so-called **bend relation** on $\mathbb{R}_{\geq 0}^{\max}[A]$.

Theorem (L'19) $(\mathbb{X}^{trop} \times_{\mathbb{F}_1} \mathbb{B})^+ = \operatorname{Spec} (B \otimes_{\mathbf{k}} \mathbb{T} \otimes_{\mathbb{F}_1} \mathbb{B})^+$ is naturally isomorphic to the Giansiracusa tropicalization of X.

In particular, we recover the Giansiracusa bend relation on $\mathbb{R}_{\geq 0}^{\max}[A]$ as the congruence kernel of the projection

$$\mathbb{R}^{\max}_{\geq 0}[A] \longrightarrow \left(B \otimes_{\mathbf{k}} \mathbb{T} \otimes_{\mathbb{F}_1} \mathbb{B} \right)^+$$

induced by $\pi: k[A] \to R$.

Part 7: Matroid bundles (joint work with Matthew Baker)

The regular partial field is the ordered blueprint

$$\mathbb{F}_1^{\pm} \;=\; \Big(\{0,1,\epsilon\},\,\mathbb{N}[1,\epsilon],\,\langle 0\leq 1+\epsilon
angle\Big)$$

where $\epsilon^2 = 1$. Thus ϵ plays the role of an additive inverse of 1.

An \mathbb{F}_1^{\pm} -algebra is an ordered blueprint *B* together with a morphism $\mathbb{F}_1^{\pm} \to B$. By abuse of notation, we denote the image of ϵ in *B* also by ϵ .

An $\operatorname{\mathsf{idyll}}$ is an \mathbb{F}_1^\pm -algebra $\mathbb{F}_1^\pm o F$ such that

$$\blacktriangleright F^{\bullet} = \{0\} \cup F^{\times};$$

$$\blacktriangleright F^+ = \mathbb{N}[F^{\times}];$$

▶ for all relations of the form $0 \le \sum c_i a_i$, we have either $\sum c_i \ge 3$ or $\sum c_i a_i = a + \epsilon a$ for some $a \in B$.

Remark: We interpret $\sum c_i a_i$ as zero if $0 \leq \sum c_i a_i$.

Examples

The regular partial field \mathbb{F}_1^{\pm} is tautologically an idyll.

The Krasner hyperfield $\mathbb{K} = (\{0, 1\}, \mathbb{N}, \langle 0 \leq 1 + 1, 1 \leq 1 + 1\rangle)$ is an idyll with respect to the morphism $\mathbb{F}_1^{\pm} \to \mathbb{K}$ that sends ϵ to 1.

The tropical hyperfield \mathbb{T} is an idyll with respect to the morphism $\mathbb{F}_1^{\pm} \to \mathbb{T}$ that maps ϵ to 1.

The ordered blueprint **k** associated with a field k is an idyll with respect to the morphism $\mathbb{F}_1^{\pm} \to \mathbf{k}$ that maps ϵ to -1.

Baker-Bowler theory

Fix
$$E = \{1, \ldots, n\}$$
 and $0 \le r \le n$. Let $\binom{E}{r} = \{r \text{-subsets of } E\}$.

Let *F* be an idyll. A **Grassmann-Plücker function in** *F* is a nontrivial function

$$\Delta: \begin{pmatrix} E \\ r \end{pmatrix} \longrightarrow F$$

that satisfies the *Plücker relations*, i.e.

$$0 \leq \sum_{k=0}^{k=r} \epsilon^k \Delta (J - \{j_k\}) \Delta (J' \cup \{j_k\})$$

for all (r + 1)-subsets $J = \{j_0, \ldots, j_r\}$ and (r - 1)-subsets J' of E where $j_0 < \cdots < j_r$ and $\Delta(J' \cup \{j_k\}) = 0$ if $j_k \in J'$.

An *F*-matroid is an F^{\times} -class $M = [\Delta]$ of a Grassmann-Plücker function $\Delta : {E \choose r} \to F$.

Theorem (Baker-Bowler 19)

Duality and cryptomorphisms (cycles, dual pairs) for F-matroids.

A matroid is a \mathbb{K} -matroid.

A valuated matroid, or tropical linear space, is a $\mathbb{T}\text{-matroid}$ where \mathbb{T} is the tropical hyperfield.

Let k be a field and k the associated idyll. Then a k-matroid is a k-rational point of the Grassmannian Gr(r, E).

Matroids as rational points of a Grassmannian

Heuristic: An *F*-matroid should be an *F*-rational point of a Grassmannian "Gr(r, E)". A *matroid bundle* on an ordered blue \mathbb{F}_1^{\pm} -scheme X should be a morphism " $X \to \text{Gr}(r, E)$ ".

Certainly "Gr(r, E)" cannot be a usual scheme. But we can turn this into a concise statement! Namely...

Let $B = (B^ullet, B^+, \leq)$ be the \mathbb{F}_1^\pm -algebra with

•
$$B^+ = \mathbb{N}[1, \epsilon][T_I | I \in {E \choose r}]$$
 where $\epsilon^2 = 1$;

- $\blacktriangleright B^{\bullet} = \big\{ c \cdot \prod T_{I}^{e_{I}} \big| c \in \{0, 1, \epsilon\}, e_{i} \in \mathbb{N} \big\};$
- \blacktriangleright \leq is generated by $0 \leq 1 + \epsilon$ and the Plücker relations.

The matroid space is defined as Mat(r, E) = Proj B where Proj is defined analogously to usual algebraic geometry.

Theorem (Baker-L'18)

Let F be an idyll. Then Mat(r, E)(F) stays in a natural bijection with the set of all F-matroids $M = [\Delta : {E \choose r} \to F]$.

Digression: applications to matroid theory

Let F be an idyll. There is a unique morphism $t_F : F \to \mathbb{K}$. We say that a matroid M is representable over F if there is a Grassmann-Plücker function $\Delta : {E \choose r} \to F$ such that $M = [t_F \circ \Delta]$.

The morphism Spec $\mathbb{K} \to Mat(r, E)$ associated with a matroid M has a unique image point x_M . The universal idyll of M is the "residue field" k_M of Mat(r, E) at x_M .

Theorem (Baker-L'18)

Let F be an idyll and M a matroid. Then M is representable over F if and only if there is a morphism $k_M \rightarrow F$.

Remark: There is a derived object F_M , the **foundation** of M, that is better suited for applications than k_M . Representability is for many idylls F equivalent to the existence of a morphism $F_M \to F$. This leads to new proofs of various classical theorems on matroids.

Matroid bundles

Let X be an ordered blue \mathbb{F}_1^{\pm} -scheme. A line bundle on X is a sheaf \mathcal{L} that is locally isomorphic to the structure sheaf \mathcal{O}_X .

A Grassmann-Plücker function on X is a line bundle \mathcal{L} together with a function

$$\Delta: \begin{pmatrix} E \\ r \end{pmatrix} \longrightarrow \Gamma(X, \mathcal{L})$$

such that $\{\Delta(I)|I \in {E \choose r}\}$ generates \mathcal{L} and that satisfies the Plücker relations.

A matroid bundle on X is an isomorphism class $\mathcal{M} = [\Delta]$ of Grassmann-Plücker functions.

The moduli interpretation of matroid bundles

The matroid space comes with the usual Plücker embedding

$$\iota: \mathsf{Mat}(r, E) \longrightarrow \mathbb{P}^{\mathsf{N}}_{\mathbb{F}_1^{\pm}} = \operatorname{``Proj} \mathbb{F}_1^{\pm}[\mathcal{T}_I | I \in {E \choose r}]$$
''

where $N = \# {E \choose r} - 1$. Let $\mathcal{O}(1)$ be the first twisted sheaf on \mathbb{P}^N . Then $T_I \in \Gamma(\mathbb{P}^N_{\mathbb{F}_1^{\pm}}, \mathcal{O}(1))$.

Theorem (Baker-L'18)

Let X be an ordered blue \mathbb{F}_1^{\pm} -scheme. Sending a morphism $\varphi : X \to \operatorname{Mat}(r, E)$ to the function $\Delta : {E \choose r} \to \Gamma(X, (\iota \circ \varphi)^*(\mathcal{O}(1)))$ with $\Delta(I) = (\iota \circ \varphi)^{\#}(T_I)$ defines a bijection

$$\operatorname{Hom}_{\mathbb{F}_1^{\pm}}(X,\operatorname{Mat}(r,E)) \longrightarrow \{ matroid \ bundles \ on \ X \}.$$

In other words, Mat(r, E) is the fine moduli space of matroid bundles on X.

Matroids over the tropical integers

The hyperring of tropical integers is the ordered blueprint

$$\mathcal{O}_{\mathbb{T}} \; = \; \Bigl([0,1], \, \mathbb{N} \big[(0,1] \big], \, \langle c \leq a+b | c \leq a+b \text{ in } \mathbb{T} \rangle \Bigr),$$

which is an \mathbb{F}_1^{\pm} -algebra with respect to the morphism $\mathbb{F}_1^{\pm} \to \mathcal{O}_{\mathbb{T}}$ that sends ϵ to 1.

Since $\mathcal{O}_{\mathbb{T}}^{\times} = \{1\}$ and all line bundles on Spec $\mathcal{O}_{\mathbb{T}}$ are trivial, a matroid bundle on Spec $\mathcal{O}_{\mathbb{T}}$ is the same as a function

$$\Delta : \begin{pmatrix} E \\ r \end{pmatrix} \longrightarrow \mathcal{O}_{\mathbb{T}}$$

such that $\Delta(I) = 1$ for some $I \in {E \choose r}$ and that satisfies the Plücker relations.

Part 8: Back to the tropical Riemann-Roch theorem

The next accomplished steps

Recall the context from the beginning: a field k with discrete valuation $v: k \to \mathbb{R}_{\geq 0}$ and valuation ring R; a smooth projective k-curve X with strictly semistable R-model \mathcal{X} .

The Kato fan of \mathcal{X} provides the "coordinates" for a blue model \mathbb{X} of \mathcal{X} . Its tropicalization is $\mathbb{X}^{trop} = \mathbb{X} \times_{\mathbf{R}} \mathcal{O}_{\mathbb{T}}$ where **R** is the ordered blueprint associated with *R*.

Fact

The (geometric realization of the) dual graph G of \mathcal{X}_0 stays in natural bijection with $\mathbb{X}^{trop}(\mathcal{O}_{\mathbb{T}})$.

Future steps

- Do cocycle sets for line bundles on X^{trop} carry the expected matroid structure? Note that this requires a cryptomorphic description of O_T-matroids in terms of cycles (i.e. defining equations).
- Is the rank of the cohomology group equal to the Baker-Norine rank? Or does it give a sharper bound in the specialization lemma? (This could be very useful for Brill-Noether theory)
- Can we find a cohomological proof for the tropical Riemann-Roch theorem?
- What about Riemann-Roch for other ordered blueprints, e.g. F₁[±]?