Towards a cohomological understanding
of the tropical Riemann-Roch theorem
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Part 1: Tropical Riemann-Roch,
aka Baker-Norine theory



Divisors on graphs

Let G be a graph with vertex set V. A divisor on G is an element
of the abelian group
DivG = ZV,

which we typically write as a formal linear combination D =% D, v
of vertices v € V where D, = D(v).

A principal divisor in G is a divisor in the image of the group
homomorphism
div: z¥ — 7Y,

that sends an element f € Z" to the divisor div(f) = >_ df, v with

df, = Y (f(w)—f(v)).

edges v—w



The rank

A divisor D =" D,v on G is effective is D, > 0 for all v € V.
We define rg(D) = 0 if D + div(f) is not effective for any f € ZV.
We define recursively

r¢(D) = 1+min{rg(D—v)‘vE Vi
if D + div(f) is effective for some f € ZV.

The number rg(D) is called the rank of D.



Tropical Riemann-Roch

The degree of a divisor D =) D,v on G is deg(D) = >_D,.
The genus of G is its first Betti number

g = m(G,Z) = #{edges} — #V + 1.
The canonical divisor of G is the divisor K = )" K,v on G with
K, = #{edges v — W} —2.

Theorem (Baker-Norine 06)
Let D be a divisor on G. Then

r¢(D) —rg(K — D) = deg(D)+1—g.

Remark: Gathmann-Kerber and Mikhalkin-Zharkov have deduced
from this theorem a version for metric graphs.



The specialization lemma

Let k be a field with discrete absolute value v : k — R, valuation
ring R C k and residue field ko.

Let X be a smooth projective curve over k and X a strictly
semistable R-model of X, i.e. an R-scheme whose generic fibre X
is isomorphic to X and whose special fibre X consists of
transversally intersecting smooth curves over kg.

Let G be the dual graph of Ay whose vertices correspond to the
irreducible components of Xy and whose edges correspond to the
nodes of Xj.

Taking the Zariski closure in X' of a divisor D of X induces a group
homomorphism trop : Div X — Div G.

Theorem (Baker 07)

Let D be a divisor of rank rx(D) on X. Then
x(D) < 5 (trop(D)).
Remark: This theory has applications in Brill-Noether theory.



Part 2: Towards a cohomological
interpretation of the tropical
Riemann-Roch theorem



Endowing G with a scheme structure

We recall the context:
a field k with discrete valuation v : k — R>o;

its valuation ring R and residue field ko;

a strictly semistable R-model X of X;

>
>
» a smooth projective curve X over k;
>
» the dual graph G of Ab.

We denote by RT3 the tropical semifield (using the Berkovich
convention), which is R>¢ together with the usual multiplication
and the addition

a+ b = max{a, b}.

The subsemiring S = [0, 1] of RT3 is the semiring of tropical
integers.



A picture

Xo X=X
trop
X D e~ G tropD
SpecR °
“Kato fan” S-rational points
K trop
e S-scheme



Remarks

» In joint work with Martin Ulirsch (in progress), we can make
sense of the “Kato fan” and its tropicalization within the
theory of ordered blue schemes.

» Sets of cocycles for tropical schemes (i.e. schemes over RT5¥)

form naturally tropical linear spaces, aka valuated matroids.
For S-schemes, we need a notion of matroid bundles.



Part 3: The tropical hyperfield



An intuitive definition

The tropical hyperfield is R>q together with the usual
multiplication and the hyperaddition

alBb = { {max{a,b}} if a#b;

[0, 4] if a=b.
Note that
» 0BHa=alH0={a} forall a (neutral element);
» 0calbifand onlyif b=a (additive inverses);

» c € al b if and only if the maximum occurs twice among
a,b,c (tropical equality).



Part 4: Ordered blueprints



The definition

An ordered blueprint is a triple B = (B®, BT, <) where
» BT is a semiring (commutative with 0 and 1);

» B®* C Bt is a multiplicative subset that generates B as a
semiring and contains 0 and 1;

» < is a partial order on B that is additive and multiplicative,
i.e. x <y implies x+z <y -+ zand xz < yz.
We call BT the ambient semiring and B® the underlying
monoid of B. We write a € B for a € B®.

Given a subset S of B x BT, we denote by (S) the smallest
additive and multiplicative partial order on B*.

A morphism of ordered blueprints is a multiplicative map
f : By — B, that extends (necessarily uniquely) to an
order-preserving semiring homomorphism f* : B;" — B

This defines the category OBlpr of ordered blueprints. It is closed,
complete and cocomplete and contains free objects.



Examples

> F; = ({0,1},N,=) (initial object)
> B = ({0,1},({0,1}, max,-),=) (Boolean semifield)
> K= ({0,1},N,(0<1+41,1<1+1)) (Krasner hyperfield)
> T = (R0, N[Rxq], (c < a+ b|c € alH b)) (tropical hyperfield)
Fact
For ai,...,an, b €T, we have b < a; if and only if the
maximum occurs twice among ai, ..., anp, b.

> A field k defines the ordered blueprint
k= (k,N[k*],(c < a+blc=a+bin k)).



Part 5: Scheme theory for ordered
blueprints



Localizations

Let B be an ordered blueprint. The unit group of B is the group
B* of multiplicatively invertible elements of B.

Fact

Let S C B be a multiplicative subset. Then there exists a universal
morphism vs : B — S™1B among all morphisms f : B — C such
that f(S) C C*, which we call the localization of B at S.

For h € B, we define B[h™!] = S~1B where S = {h'};cn. We call
th = ts : B — B[h™!] the localization of B at h.



Ordered blue schemes

Let Aff = OBIpr°?. We denote the anti-equivalence of OBIlpr with
its opposite category by

Spec: OBlpr — Aff.

Given a morphism f : B — C of ordered blueprints, we write
f* : Spec C — Spec B for the opposite morphism in Aff.

A principal open immersion is a morphism in Aff of the form
v} : Spec B[h~!] — Spec B.

Let 7 be the Grothendieck pretopology on Aff that is generated by
families of principal open immersions { Spec B[hfl] — Spec B}iel
that are contained in the canonical topology of Aff.

An ordered blue scheme is the colimit of a "monodromy-free”

diagram of principal open immersions in the category of sheaves
Sh(Aff, T) on the site (Aff,T).



Geometric points

Taking geometric points of the slice category over an ordered blue
scheme X in Sh(Aff,T) allows us to identify X with a topological
space X together with a structure sheaf Ox in OBlpr.

In the case of an affine ordered blue scheme X = Spec B, where
we identify Aff with its essential image under the Yoneda
embedding Aff — Sh(Aff,T), the points of the underlying
topological space of Spec B correspond to the prime ideals of
Spec B, which are subsets p of B such that

> 0ep,

» p-B=p,and

» S =B —pis a multiplicative subset.



Part 6: Tropicalization as a base change



Nonarchimedean absolute values as morphisms

Let k be a field. Recall the definitions of the associated ordered
blueprint

k = (k, N[k*], (c < a+blc=a+bin k>)
and the tropical hyperfield

T = <R20, N[R>o], (c < a+ blc € al b>>

Fact
A map v : k = Rxq is a nonarchimedean absolute value if and only

if it is a morphism v : k — T of ordered blueprints.



Blue models

Let X = Spec R be an affine k-scheme with a choice of coordinates,
by which we mean a closed immersion ¢ : X — Spec k[A] into a
toric variety where A is a suitable monoid (commutative, fine and
saturated). Let 7w : k[A] — R the surjection of coordinate rings.

We associate with ¢ the ordered blue scheme X = Spec B where
B = ({ca!cek,aeA},N[kX x Al g)
whose partial order < is generated by the relations db < 3" ¢;a; for

which 7(db) = 7(>_ ¢ja;) in R.

The morphism k — B that sends ¢ to ¢ - 1 endows X with the
structure of an ordered blue k-scheme. We call X a blue model of
X.



Tropicalization as a base change

The scheme theoretic tropicalization of X (with respect to ¢) is
the T-scheme

X"P — X x, T = Spec (B Rk ']I‘)

where B @y T is the colimit of B +— k — T.

The set theoretic tropicalization of X (with respect to ¢) is

X”°p:{f:A—>]R>o

for all Y cja; € kerm with ¢; € k, a; € A,
{v(ci)f(ai)} assumes the maximum twice

i.e. 0<> v(c)f(aj)inT
Theorem (L'19)

The composition with the natural map A — B ® T, sending a to
(1-a) ® 1, defines a bijection

XOP(T) = Homp(B @ T, T) —s Xr°P.



Recovering the Giansiracusa tropicalization

In their seminal paper on tropical scheme theory, Jeff and Noah
Giansiracusa introduce an RT8*-scheme that represents X*°P in
terms of the so-called bend relation on RTg*[A].

Theorem (L'19)
(Xtmp XFy IB%)Jr = Spec (B ®k T QF, IB%)Jr is naturally isomorphic to
the Giansiracusa tropicalization of X.

In particular, we recover the Giansiracusa bend relation on RTZ¥[A]
as the congruence kernel of the projection

maX[A] — (B Rk T Xr, B)+

induced by 7 : k[A] = R.



Part 7: Matroid bundles
(joint work with Matthew Baker)



Idylls
The regular partial field is the ordered blueprint
Ff = ({0.1,e}, N[Ld, (0<1+6))

where €2 = 1. Thus € plays the role of an additive inverse of 1.

An Fit—algebra is an ordered blueprint B together with a morphism
Fit — B. By abuse of notation, we denote the image of € in B also
by e.
An idyll is an }F{E—algebra Ffﬁ — F such that

> F*={0}UF*;

> F+=N[F¥];

» for all relations of the form 0 < ) ¢;a;, we have either

Y ci >3 or > ciaj = a+ eafor some a € B.

Remark: We interpret > cja; as zero if 0 < ) ¢ja;.



Examples

The regular partial field Ff is tautologically an idyll.

The Krasner hyperfield K = ({0,1},N,(0 <1+ 1,1 <1+1)) is
an idyll with respect to the morphism IF%E — K that sends € to 1.

The tropical hyperfield T is an idyll with respect to the morphism
Fli — T that maps € to 1.

The ordered blueprint k associated with a field k is an idyll with
respect to the morphism Ff — k that maps € to —1.



Baker-Bowler theory
Fix E={1,....,n} and 0 < r < n. Let (f) = {r-subsets of E}.

Let F be an idyll. A Grassmann-Pliicker function in F is a
nontrivial function
A5y — F

r

that satisfies the Pliicker relations, i.e.

k=r
0 < EAJ = Lih) A U L))
0

x
Il

for all (r + 1)-subsets J = {jo,...,Jr} and (r — 1)-subsets J' of E
where jo < --- <j, and A(J'U{jx}) =0if jx € J.

An F-matroid is an F*-class M = [A] of a Grassmann-Pliicker
function A : (’;:) — F.

Theorem (Baker-Bowler 19)
Duality and cryptomorphisms (cycles, dual pairs) for F-matroids.



Examples

A matroid is a K-matroid.

A valuated matroid, or tropical linear space, is a T-matroid
where T is the tropical hyperfield.

Let k be a field and k the associated idyll. Then a k-matroid is a
k-rational point of the Grassmannian Gr(r, E).



Matroids as rational points of a Grassmannian

Heuristic: An F-matroid should be an F-rational point of a
Grassmannian “Gr(r, E)". A matroid bundle on an ordered blue
Fi-scheme X should be a morphism “X — Gr(r, E)".

Certainly “Gr(r, E)" cannot be a usual scheme. But we can turn
this into a concise statement! Namely...

Let B = (B*, B+, <) be the F{-algebra with

> Bt =N[L,€][T|/ € ()] where 2 = 1;

> B*={c-[[T|c €{0,1,¢},e € N};

> < is generated by 0 < 1+ € and the Pliicker relations.
The matroid space is defined as Mat(r, E) = Proj B where Proj is
defined analogously to usual algebraic geometry.
Theorem (Baker-L'18)
Let F be an idyll. Then Mat(r, E)(F) stays in a natural bijection
with the set of all F-matroids M = [A : (E) — F].

r



Digression: applications to matroid theory

Let F be an idyll. There is a unique morphism tr : F — K. We say
that a matroid M is representable over F if there is a
Grassmann-Pliicker function A : (f) — F such that M = [t o A].

The morphism Spec K — Mat(r, E) associated with a matroid M
has a unique image point xp;. The universal idyll of M is the
“residue field” kps of Mat(r, E) at xy.

Theorem (Baker-L'18)

Let F be an idyll and M a matroid. Then M is representable over
F if and only if there is a morphism ky — F.

Remark: There is a derived object F);, the foundation of M, that
is better suited for applications than kj;. Representability is for
many idylls F equivalent to the existence of a morphism Fp; — F.
This leads to new proofs of various classical theorems on matroids.



Matroid bundles

Let X be an ordered blue Ff—scheme. A line bundle on X is a
sheaf £ that is locally isomorphic to the structure sheaf Ox.

A Grassmann-Pliicker function on X is a line bundle £ together
with a function

A (B) — (X, L)
such that {A(/)|/ € ()} generates £ and that satisfies the
Pliicker relations.

A matroid bundle on X is an isomorphism class M = [A] of
Grassmann-Pliicker functions.



The moduli interpretation of matroid bundles

The matroid space comes with the usual Pliicker embedding
t: Mat(r,E) — }P’I’FVI =" Proj FE[Ty|/ € (’f)]
where N = #(E) — 1. Let O(1) be the first twisted sheaf on PV.
Then T; € [(P}., O(1)).
1

Theorem (Baker-L'18)

Let X be an ordered blue Fli-scheme. Sending a morphism
¢ 1 X — Mat(r, E) to the function A : (£) — T(X, (t0 9)*(O(1))
with A() = (10 )#(T,) defines a bijection

Homy+ (X, Mat(r, E)) — {matroid bundles on X }.
]Fl

In other words, Mat(r, E) is the fine moduli space of matroid
bundles on X.



Matroids over the tropical integers

The hyperring of tropical integers is the ordered blueprint
Or = ([o, 1], N[(0,1]), (c < a+blc <a+ biin ’]r>),
which is an F-algebra with respect to the morphism Ff — Or

that sends € to 1.

Since Of = {1} and all line bundles on Spec Or are trivial, a
matroid bundle on Spec Or is the same as a function

A (E) — Or

r

such that A(/) =1 for some / € (£) and that satisfies the Pliicker
relations.



Part 8: Back to the tropical
Riemann-Roch theorem



The next accomplished steps

Recall the context from the beginning: a field k with discrete
valuation v : k = R>¢ and valuation ring R; a smooth projective
k-curve X with strictly semistable R-model X

The Kato fan of X' provides the “coordinates” for a blue model X of
X. Its tropicalization is X'°P = X xgr O where R is the ordered
blueprint associated with R.

Fact
The (geometric realization of the) dual graph G of Xy stays in
natural bijection with X'°P(Or).



Future

steps

Do cocycle sets for line bundles on X'°P carry the expected
matroid structure? Note that this requires a cryptomorphic
description of Op-matroids in terms of cycles (i.e. defining
equations).

Is the rank of the cohomology group equal to the Baker-Norine
rank? Or does it give a sharper bound in the specialization
lemma? (This could be very useful for Brill-Noether theory)

Can we find a cohomological proof for the tropical
Riemann-Roch theorem?

What about Riemann-Roch for other ordered blueprints, e.g.
F?



	Part 1: Tropical Riemann-Roch,  aka Baker-Norine theory
	Part 2: Towards a cohomological interpretation of the tropical Riemann-Roch theorem
	Part 3: The tropical hyperfield
	Part 4: Ordered blueprints
	Part 5: Scheme theory for ordered blueprints
	Part 6: Tropicalization as a base change
	Part 7: Matroid bundles  (joint work with Matthew Baker)
	Part 8: Back to the tropical Riemann-Roch theorem

