
Towards a cohomological understanding
of the tropical Riemann-Roch theorem

Oliver Lorscheid



Part 1: Tropical Riemann-Roch,
aka Baker-Norine theory



Divisors on graphs

Let G be a graph with vertex set V . A divisor on G is an element

of the abelian group

DivG = ZV ,

which we typically write as a formal linear combination D =
∑

Dvv
of vertices v ∈ V where Dv = D(v).

A principal divisor in G is a divisor in the image of the group

homomorphism

div : ZV −→ ZV ,

that sends an element f ∈ ZV to the divisor div(f ) =
∑

dfvv with

dfv =
∑

edges v−w

(
f (w)− f (v)

)
.



The rank

A divisor D =
∑

Dvv on G is e�ective is Dv ≥ 0 for all v ∈ V .

We de�ne rG (D) = 0 if D + div(f ) is not e�ective for any f ∈ ZV .

We de�ne recursively

rG (D) = 1 + min
{
rG (D − v)

∣∣ v ∈ V
}

if D + div(f ) is e�ective for some f ∈ ZV .

The number rG (D) is called the rank of D.



Tropical Riemann-Roch

The degree of a divisor D =
∑

Dvv on G is deg(D) =
∑

Dv .

The genus of G is its �rst Betti number

g = h1(G ,Z) = #{edges} −#V + 1.

The canonical divisor of G is the divisor K =
∑

Kvv on G with

Kv = #
{
edges v − w

}
− 2.

Theorem (Baker-Norine 06)

Let D be a divisor on G . Then

rG (D)− rG (K − D) = deg(D) + 1− g .

Remark: Gathmann-Kerber and Mikhalkin-Zharkov have deduced

from this theorem a version for metric graphs.



The specialization lemma

Let k be a �eld with discrete absolute value v : k → R≥0, valuation
ring R ( k and residue �eld k0.

Let X be a smooth projective curve over k and X a strictly

semistable R-model of X , i.e. an R-scheme whose generic �bre Xk

is isomorphic to X and whose special �bre X0 consists of

transversally intersecting smooth curves over k0.

Let G be the dual graph of X0 whose vertices correspond to the

irreducible components of X0 and whose edges correspond to the

nodes of X0.

Taking the Zariski closure in X of a divisor D of X induces a group

homomorphism trop : DivX → DivG .

Theorem (Baker 07)

Let D be a divisor of rank rX (D) on X . Then

rX (D) ≤ rG
(
trop(D)

)
.

Remark: This theory has applications in Brill-Noether theory.



Part 2: Towards a cohomological
interpretation of the tropical

Riemann-Roch theorem



Endowing G with a scheme structure

We recall the context:

I a �eld k with discrete valuation v : k → R≥0;
I its valuation ring R and residue �eld k0;

I a smooth projective curve X over k ;

I a strictly semistable R-model X of X ;

I the dual graph G of X0.

We denote by Rmax
≥0 the tropical semi�eld (using the Berkovich

convention), which is R≥0 together with the usual multiplication

and the addition

a + b = max{a, b}.

The subsemiring S = [0, 1] of Rmax
≥0 is the semiring of tropical

integers.



A picture

S-scheme

D
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X
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Remarks

I In joint work with Martin Ulirsch (in progress), we can make

sense of the �Kato fan� and its tropicalization within the

theory of ordered blue schemes.

I Sets of cocycles for tropical schemes (i.e. schemes over Rmax
≥0 )

form naturally tropical linear spaces, aka valuated matroids.

For S-schemes, we need a notion of matroid bundles.



Part 3: The tropical hyper�eld



An intuitive de�nition

The tropical hyper�eld is R≥0 together with the usual

multiplication and the hyperaddition

a� b =

{ {
max{a, b}

}
if a 6= b;

[0, a] if a = b.

Note that

I 0� a = a� 0 = {a} for all a (neutral element);

I 0 ∈ a� b if and only if b = a (additive inverses);

I c ∈ a� b if and only if the maximum occurs twice among

a, b, c (tropical equality).



Part 4: Ordered blueprints



The de�nition

An ordered blueprint is a triple B = (B•,B+,≤) where

I B+ is a semiring (commutative with 0 and 1);

I B• ⊂ B+ is a multiplicative subset that generates B+ as a

semiring and contains 0 and 1;

I ≤ is a partial order on B+ that is additive and multiplicative,

i.e. x ≤ y implies x + z ≤ y + z and xz ≤ yz .

We call B+ the ambient semiring and B• the underlying
monoid of B . We write a ∈ B for a ∈ B•.

Given a subset S of B+ × B+, we denote by 〈S〉 the smallest

additive and multiplicative partial order on B+.

A morphism of ordered blueprints is a multiplicative map

f : B1 → B2 that extends (necessarily uniquely) to an

order-preserving semiring homomorphism f + : B+
1 → B+

2 .

This de�nes the category OBlpr of ordered blueprints. It is closed,

complete and cocomplete and contains free objects.



Examples

I F1 =
(
{0, 1},N,=

)
(initial object)

I B =
(
{0, 1}, ({0, 1},max, ·),=

)
(Boolean semi�eld)

I K =
(
{0, 1},N, 〈0 ≤ 1 + 1, 1 ≤ 1 + 1〉

)
(Krasner hyper�eld)

I T =
(
R≥0,N[R>0], 〈c ≤ a+ b|c ∈ a� b〉

)
(tropical hyper�eld)

Fact
For a1, . . . , an, b ∈ T, we have b ≤

∑
ai if and only if the

maximum occurs twice among a1, . . . , an, b.

I A �eld k de�nes the ordered blueprint

k =
(
k ,N[k×], 〈c ≤ a + b|c = a + b in k〉

)
.



Part 5: Scheme theory for ordered
blueprints



Localizations

Let B be an ordered blueprint. The unit group of B is the group

B× of multiplicatively invertible elements of B .

Fact
Let S ⊂ B be a multiplicative subset. Then there exists a universal

morphism ιS : B → S−1B among all morphisms f : B → C such

that f (S) ⊂ C×, which we call the localization of B at S .

For h ∈ B , we de�ne B[h−1] = S−1B where S = {hi}i∈N. We call

ιh = ιS : B → B[h−1] the localization of B at h.



Ordered blue schemes

Let Aff = OBlprop. We denote the anti-equivalence of OBlpr with
its opposite category by

Spec : OBlpr −→ Aff .

Given a morphism f : B → C of ordered blueprints, we write

f ∗ : SpecC → SpecB for the opposite morphism in Aff.

A principal open immersion is a morphism in Aff of the form

ι∗h : SpecB[h−1]→ SpecB .

Let T be the Grothendieck pretopology on Aff that is generated by

families of principal open immersions
{

SpecB[h−1i ]→ SpecB
}
i∈I

that are contained in the canonical topology of Aff.

An ordered blue scheme is the colimit of a �monodromy-free�

diagram of principal open immersions in the category of sheaves

Sh(Aff, T ) on the site (Aff, T ).



Geometric points

Taking geometric points of the slice category over an ordered blue

scheme X in Sh(Aff, T ) allows us to identify X with a topological

space X together with a structure sheaf OX in OBlpr.

In the case of an a�ne ordered blue scheme X = SpecB , where
we identify Aff with its essential image under the Yoneda

embedding Aff → Sh(Aff, T ), the points of the underlying

topological space of SpecB correspond to the prime ideals of

SpecB , which are subsets p of B such that

I 0 ∈ p,

I p · B = p, and

I S = B − p is a multiplicative subset.



Part 6: Tropicalization as a base change



Nonarchimedean absolute values as morphisms

Let k be a �eld. Recall the de�nitions of the associated ordered

blueprint

k =
(
k , N[k×], 〈c ≤ a + b|c = a + b in k〉

)
and the tropical hyper�eld

T =
(
R≥0, N[R>0], 〈c ≤ a + b|c ∈ a� b〉

)
.

Fact
A map v : k → R≥0 is a nonarchimedean absolute value if and only

if it is a morphism v : k→ T of ordered blueprints.



Blue models

Let X = SpecR be an a�ne k-scheme with a choice of coordinates,

by which we mean a closed immersion ι : X → Spec k[A] into a

toric variety where A is a suitable monoid (commutative, �ne and

saturated). Let π : k[A]→ R the surjection of coordinate rings.

We associate with ι the ordered blue scheme X = SpecB where

B =
({

ca
∣∣ c ∈ k, a ∈ A

}
, N[k× × A], ≤

)
whose partial order ≤ is generated by the relations db ≤

∑
ciai for

which π(db) = π(
∑

ciai ) in R .

The morphism k→ B that sends c to c · 1 endows X with the

structure of an ordered blue k-scheme. We call X a blue model of

X .



Tropicalization as a base change

The scheme theoretic tropicalization of X (with respect to ι) is
the T-scheme

Xtrop = X×k T = Spec
(
B ⊗k T

)
where B ⊗k T is the colimit of B ←− k

v−→ T.

The set theoretic tropicalization of X (with respect to ι) is

X trop =

{
f : A→ R≥0

∣∣∣∣ for all
∑

ciai ∈ kerπ with ci ∈ k , ai ∈ A,
{v(ci )f (ai )} assumes the maximum twice︸ ︷︷ ︸

i.e. 0≤
∑

v(ci )f (ai ) in T

}

Theorem (L'19)

The composition with the natural map A→ B ⊗k T, sending a to

(1 · a)⊗ 1, de�nes a bijection

Xtrop(T) = HomT(B ⊗k T,T) −→ X trop.



Recovering the Giansiracusa tropicalization

In their seminal paper on tropical scheme theory, Je� and Noah

Giansiracusa introduce an Rmax
≥0 -scheme that represents X trop in

terms of the so-called bend relation on Rmax
≥0 [A].

Theorem (L'19)(
Xtrop ×F1 B

)+
= Spec

(
B ⊗k T⊗F1 B

)+
is naturally isomorphic to

the Giansiracusa tropicalization of X .

In particular, we recover the Giansiracusa bend relation on Rmax
≥0 [A]

as the congruence kernel of the projection

Rmax
≥0 [A] −→

(
B ⊗k T⊗F1 B

)+
induced by π : k[A]→ R .



Part 7: Matroid bundles
(joint work with Matthew Baker)



Idylls

The regular partial �eld is the ordered blueprint

F±1 =
(
{0, 1, ε}, N[1, ε], 〈0 ≤ 1 + ε〉

)
where ε2 = 1. Thus ε plays the role of an additive inverse of 1.

An F±1 -algebra is an ordered blueprint B together with a morphism

F±1 → B . By abuse of notation, we denote the image of ε in B also

by ε.

An idyll is an F±1 -algebra F±1 → F such that

I F • = {0} ∪ F×;

I F+ = N[F×];

I for all relations of the form 0 ≤
∑

ciai , we have either∑
ci ≥ 3 or

∑
ciai = a + εa for some a ∈ B .

Remark: We interpret
∑

ciai as zero if 0 ≤
∑

ciai .



Examples

The regular partial �eld F±1 is tautologically an idyll.

The Krasner hyper�eld K =
(
{0, 1},N, 〈0 ≤ 1 + 1, 1 ≤ 1 + 1〉

)
is

an idyll with respect to the morphism F±1 → K that sends ε to 1.

The tropical hyper�eld T is an idyll with respect to the morphism

F±1 → T that maps ε to 1.

The ordered blueprint k associated with a �eld k is an idyll with

respect to the morphism F±1 → k that maps ε to −1.



Baker-Bowler theory

Fix E = {1, . . . , n} and 0 ≤ r ≤ n. Let
(E
r

)
= {r -subsets of E}.

Let F be an idyll. A Grassmann-Plücker function in F is a

nontrivial function

∆ :
(E
r

)
−→ F

that satis�es the Plücker relations, i.e.

0 ≤
k=r∑
k=0

εk∆
(
J − {jk}

)
∆
(
J ′ ∪ {jk}

)
for all (r + 1)-subsets J = {j0, . . . , jr} and (r − 1)-subsets J ′ of E
where j0 < · · · < jr and ∆(J ′ ∪ {jk}) = 0 if jk ∈ J ′.

An F -matroid is an F×-class M = [∆] of a Grassmann-Plücker

function ∆ :
(E
r

)
→ F .

Theorem (Baker-Bowler 19)

Duality and cryptomorphisms (cycles, dual pairs) for F -matroids.



Examples

A matroid is a K-matroid.

A valuated matroid, or tropical linear space, is a T-matroid

where T is the tropical hyper�eld.

Let k be a �eld and k the associated idyll. Then a k-matroid is a

k-rational point of the Grassmannian Gr(r ,E ).



Matroids as rational points of a Grassmannian

Heuristic: An F -matroid should be an F -rational point of a
Grassmannian �Gr(r ,E )�. A matroid bundle on an ordered blue

F±1 -scheme X should be a morphism �X → Gr(r ,E )�.

Certainly �Gr(r ,E )� cannot be a usual scheme. But we can turn

this into a concise statement! Namely...

Let B = (B•,B+,≤) be the F±1 -algebra with

I B+ = N[1, ε][TI |I ∈
(E
r

)
] where ε2 = 1;

I B• =
{
c ·
∏

T eI
I

∣∣c ∈ {0, 1, ε}, ei ∈ N
}
;

I ≤ is generated by 0 ≤ 1 + ε and the Plücker relations.

The matroid space is de�ned as Mat(r ,E ) = ProjB where Proj is
de�ned analogously to usual algebraic geometry.

Theorem (Baker-L'18)

Let F be an idyll. Then Mat(r ,E )(F ) stays in a natural bijection

with the set of all F -matroids M =
[
∆ :

(E
r

)
→ F

]
.



Digression: applications to matroid theory

Let F be an idyll. There is a unique morphism tF : F → K. We say

that a matroid M is representable over F if there is a

Grassmann-Plücker function ∆ :
(E
r

)
→ F such that M = [tF ◦∆].

The morphism SpecK→ Mat(r ,E ) associated with a matroid M
has a unique image point xM . The universal idyll of M is the

�residue �eld� kM of Mat(r ,E ) at xM .

Theorem (Baker-L'18)

Let F be an idyll and M a matroid. Then M is representable over

F if and only if there is a morphism kM → F .

Remark: There is a derived object FM , the foundation of M, that

is better suited for applications than kM . Representability is for

many idylls F equivalent to the existence of a morphism FM → F .
This leads to new proofs of various classical theorems on matroids.



Matroid bundles

Let X be an ordered blue F±1 -scheme. A line bundle on X is a

sheaf L that is locally isomorphic to the structure sheaf OX .

A Grassmann-Plücker function on X is a line bundle L together

with a function

∆ :
(E
r

)
−→ Γ(X ,L)

such that
{

∆(I )|I ∈
(E
r

)}
generates L and that satis�es the

Plücker relations.

A matroid bundle on X is an isomorphism classM = [∆] of
Grassmann-Plücker functions.



The moduli interpretation of matroid bundles

The matroid space comes with the usual Plücker embedding

ι : Mat(r ,E ) −→ PN
F±
1

= � ProjF±1 [TI |I ∈
(E
r

)
]�

where N = #
(E
r

)
− 1. Let O(1) be the �rst twisted sheaf on PN .

Then TI ∈ Γ(PN
F±
1

,O(1)).

Theorem (Baker-L'18)

Let X be an ordered blue F±1 -scheme. Sending a morphism

ϕ : X → Mat(r ,E ) to the function ∆ :
(E
r

)
→ Γ(X , (ι ◦ ϕ)∗(O(1))

with ∆(I ) = (ι ◦ ϕ)#(TI ) de�nes a bijection

HomF±
1

(
X ,Mat(r ,E )

)
−→

{
matroid bundles on X

}
.

In other words, Mat(r ,E ) is the �ne moduli space of matroid

bundles on X .



Matroids over the tropical integers

The hyperring of tropical integers is the ordered blueprint

OT =
(

[0, 1], N
[
(0, 1]

]
, 〈c ≤ a + b|c ≤ a + b in T〉

)
,

which is an F±1 -algebra with respect to the morphism F±1 → OT
that sends ε to 1.

Since O×T = {1} and all line bundles on SpecOT are trivial, a

matroid bundle on SpecOT is the same as a function

∆ :
(E
r

)
−→ OT

such that ∆(I ) = 1 for some I ∈
(E
r

)
and that satis�es the Plücker

relations.



Part 8: Back to the tropical
Riemann-Roch theorem



The next accomplished steps

Recall the context from the beginning: a �eld k with discrete

valuation v : k → R≥0 and valuation ring R ; a smooth projective

k-curve X with strictly semistable R-model X .
The Kato fan of X provides the �coordinates� for a blue model X of

X . Its tropicalization is Xtrop = X×R OT where R is the ordered

blueprint associated with R .

Fact
The (geometric realization of the) dual graph G of X0 stays in

natural bijection with Xtrop(OT).



Future steps

I Do cocycle sets for line bundles on Xtrop carry the expected

matroid structure? Note that this requires a cryptomorphic

description of OT-matroids in terms of cycles (i.e. de�ning

equations).

I Is the rank of the cohomology group equal to the Baker-Norine

rank? Or does it give a sharper bound in the specialization

lemma? (This could be very useful for Brill-Noether theory)

I Can we �nd a cohomological proof for the tropical

Riemann-Roch theorem?

I What about Riemann-Roch for other ordered blueprints, e.g.

F±1 ?
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