The moduli space of matroids

Oliver Lorscheid

January 2019 Based on a joint work with Matthew Baker Content overview, and the thread

Theorem (Tutte '58) A matroid is regular if and only if it is binary and orientable.

Part 1: Pastures

Definition

A **pasture** is a pair $F = (F^{\times}, N_F)$ of an abelian group F^{\times} (the *unit group*) and a subset N_F (the *nullset*) of the group semiring

$$\mathbb{N}[F^{\times}] = \left\{ \sum_{a \in F^{\times}} n_a \cdot a \, \middle| \, n_a \in \mathbb{N}, n_a = 0 \text{ for almost all } a \right\}$$

that satisfies that

- 1. $0 \in N_F$;
- 2. $N_F + N_F \subset N_F$;
- 3. $N_F \cdot F^{\times} \subset N_F$;
- there is a unique b ∈ F[×] for every a ∈ F[×] such that a + b ∈ N_F (the *weak inverse* of a).

The *underlying set* of *F* is the subset $F^{\times} \cup \{0\}$ of $\mathbb{N}[F^{\times}]$.

We denote the weak inverse of 1 by ϵ . We have $\epsilon^2 = 1$, and $b \in F$ is the weak inverse of $a \in F$ if and only if $b = \epsilon a$.

Examples

1. A field k can be realized as the pasture (k^{\times}, N_k) with

$$N_k = \Big\{ \sum n_a \cdot a \in \mathbb{N}[k^{ imes}] \Big| \sum n_a \cdot a = 0 ext{ as elements of } k \Big\}.$$

Note that the underlying set of (k^{\times}, N_k) is k itself. For instance, $\mathbb{F}_2 = (\{1\}, N_{\mathbb{F}_2})$ with $N_{\mathbb{F}_2} = \{n \cdot 1 | n \in \mathbb{N} \text{ even}\}.$

- 2. The Krasner hyperfield is the pasture $\mathbb{K} = (\{1\}, N_{\mathbb{K}})$ with $N_{\mathbb{K}} = \{n \cdot 1 | n \neq 1\}$. Note that $\epsilon = 1$ and $\mathbb{K} = \{0, 1\}$ (as sets).
- 3. The sign hyperfield is the pasture $\mathbb{S} = (\{1, \epsilon\}, N_{\mathbb{S}})$ with $N_{\mathbb{S}} = \{n_1 1 + n_{\epsilon} \epsilon | n_1 = n_{\epsilon} = 0 \text{ or } n_1 \neq 0 \neq n_{\epsilon}\}.$
- 4. The regular partial field is the pasture $\mathbb{F}_1^{\pm} = (\{1, \epsilon\}, N_{\mathbb{F}_1^{\pm}})$ with $N_{\mathbb{F}_1^{\pm}} = \{n_1 1 + n_{\epsilon} \epsilon | n_1 = n_{\epsilon}\}.$

Morphisms

A morphism of pastures is a map $f: F_1 \to F_2$ between pastures F_1 and F_2 such that

•
$$f(0) = 0$$
 and $f(1) = 1$;

•
$$f(a \cdot b) = f(a) \cdot f(b);$$

• $\sum n_a a \in N_{F_1}$ implies that $\sum n_a f(a) \in N_{F_2}$.

Example

- 1. sign : $\mathbb{R} \to \mathbb{S}$.
- 2. For every pasture F, there are a unique morphism

 $t_F: F \longrightarrow \mathbb{K}$ (the *terminal map*) given by $t_F(a) = 1$ for all $a \neq 0$, and a unique morphism $i_F: \mathbb{F}_1^{\pm} \longrightarrow F$ given by $i_F(0) = 0$, $i_F(1) = 1$ and $i_F(\epsilon) = \epsilon$.

Part 2: Matroids

k-matroids

For the rest of the talk, let $0 \le r \le n$ be fixed integers and $E = \{1, ..., n\}$. Let k be a field.

Definition

A *k*-matroid (on *E* of rank *r*) is an *r*-dimensional subspace *L* of $k^n = \{ \text{maps } E \to k \}.$

Cryptomorphic description

A k-matroid is the same as a point of the Grassmannian Gr(r, n)(k), which is a subset of the projective space

$$\mathbb{P}^{N}(k) = \left\{ \left[\Delta_{I} \right] \middle| I \in {E \choose r} \right\}$$

where $N = \binom{n}{r} - 1$ and $\binom{E}{r}$ is the collection of all *r*-subsets of *E*.

k-matroids

In other words: A *k*-matroid is a k^{\times} -class [Δ] of a *Grassmann-Plücker function*, which is a nonzero map

$$\Delta: \binom{E}{r} \longrightarrow k$$

that satisfies the Plücker relations

$$\sum_{k=1}^{r+1} (-1)^k \Delta_{I \cup \{j_k\}} \Delta_{J - \{j_k\}} = 0$$

for all $I, J \subset E$ with #I = r - 1, $J = \{j_1, \ldots, j_{r+1}\}$ where $j_1 < \ldots < j_{r+1}$ and $\Delta(I \cup \{j_k\}) = 0$ if $j_k \in I$.

F-matroids

Let *F* be a pasture. An *F*-matroid is an F^{\times} -class [Δ] of a *Grassmann-Plücker function*, which is a nonzero map

$$\Delta: \begin{pmatrix} E \\ r \end{pmatrix} \longrightarrow F$$

that satisfies the Plücker relations

$$\sum_{k=1}^{r+1} \epsilon^k \Delta_{I \cup \{j_k\}} \Delta_{J - \{j_k\}} \in N_F$$

for all $I, J \subset E$ with #I = r - 1, $J = \{j_1, \ldots, j_{r+1}\}$ where $j_1 < \ldots < j_{r+1}$ and $\Delta(I \cup \{j_k\}) = 0$ if $j_k \in I$.

Matroids

Definition A matroid is a K-matroid.

Example

1. Let Γ be a connected graph, E its set of edges and

 $r = \#E - b_1(\Gamma) = \#\{\text{edges in a spanning tree of }\Gamma\}.$ Then

$$\begin{array}{rcl} \Delta: & \binom{E}{r} & \longrightarrow & \mathbb{K} \\ & I & \longmapsto & \begin{cases} 1 & \text{if } I \text{ is a spanning tree of } \Gamma \\ 0 & \text{if not} \end{cases} \end{array}$$

is a Grassmann-Plücker function and defines a matroid $M = [\Delta]$.

2. Let F = k be a field and *r*-dimensional subspace $L \subset k^n$ with Grassmann-Plücker function $\Delta : {E \choose r} \to k$. Let $t_k : k \to \mathbb{K}$ be the terminal map. Then $M = [t_k \circ \Delta]$ is a matroid.

Regular, binary and orientable matroids

Let *F* be a pasture with terminal map $t_F : F \to \mathbb{K}$. A matroid *M* is **representable over** *F* if there is a Grassmann-Plücker function $\Delta : {E \choose r} \to F$ such that $M = [t_F \circ \Delta]$.

A matroid M is called

- regular if M is representable over the regular partial field \mathbb{F}_1^{\pm} ;
- **binary** if *M* is representable over the finite field \mathbb{F}_2 ;
- ▶ orientable if *M* is representable over the sign hyperfield S.

Theorem (Tutte, 1958)

A matroid is regular if and only if it is binary and orientable.

Part 3: Moduli spaces

Ordered blueprints

An ordered blueprint is a triple $B = (B^{\bullet}, B^+, \leq)$ where

- B^+ is a semiring (commutative with 0 and 1);
- B[•] ⊂ B⁺ is a multiplicatively closed subset of generators containing 0 and 1;
- ► ≤ is a partial order on B⁺ that is additive and multiplicative, i.e. x ≤ y implies x + z ≤ y + z and x · z ≤ y · z.

Example

A pasture $F=(F^{\times},N_F)$ can be realized as the ordered blueprint $B=(B^{\bullet},B^+,\leq)$ with

$$\blacktriangleright B^+ = \mathbb{N}[F^{\times}];$$

$$\blacktriangleright B^{\bullet} = F = F^{\times} \cup \{0\} \subset \mathbb{N}[F^{\times}];$$

▶ and the smallest additive and multiplicative partial order \leq on B^+ for which $0 \leq \sum n_a a$ whenever $\sum n_a a \in N_F$.

It is possible to mimic the following notions from algebra and algebraic geometry for ordered blueprints instead for rings:

- (prime) ideals;
- localizations;
- ▶ Spec *B* and Proj *B* (for a graded ordered blueprint *B*);
- (ordered blue) schemes;
- line bundles;

Matroid bundles

Let X be an ordered blue scheme. A **Grassmann-Plücker** function on X is a line bundle \mathcal{L} on X together with map

$$\Delta: {E \choose r} \longrightarrow \Gamma(X, \mathcal{L})$$

that satifies the Plücker relations and for which the family of sections $\{\Delta_I | I \in {E \choose r}\}$ generates \mathcal{L} .

A matroid bundle on X is an isomorphism class $[\Delta]$ of a Grassmann-Plücker function $\Delta : {E \choose r} \to \Gamma(X, \mathcal{L})$.

Note that for an pasture F, an F-matroid is the same as a matroid bundle on Spec F. (Spec F is a point and Γ (Spec F, \mathcal{L}) = F for every line bundle \mathcal{L})

The matroid space

The matroid space is defined as

$$\text{``Mat}(r, E) = \operatorname{Proj}\left(\mathbb{F}_{1}^{\pm}[\mathcal{T}_{I}|I \in \binom{E}{r}]/(\operatorname{Plücker relations})\right), \text{''}$$

which can be thought of as a Grassmannian over the regular partial field \mathbb{F}_1^{\pm} .

It comes with an embedding $\iota : Mat(r, E) \to \mathbb{P}^N$ into projective space where $N = \binom{n}{r} - 1$.

The universal line bundle is $\mathcal{L}_{univ} = \iota^* \mathcal{O}(1)$ and the universal Grassmann-Plücker function is

$$\begin{array}{ccc} \Delta_{\mathsf{univ}} : & \binom{E}{r} & \longrightarrow & \Gamma(\mathsf{Mat}(r,E),\mathcal{L}_{\mathsf{univ}}). \\ & I & \longmapsto & T_I \end{array}$$

The moduli property

Theorem (BL18)

Mat(r, E) is the fine moduli space of matroid bundles. Its universal family is the matroid bundle $[\Delta_{univ}]$.

Corollary Let F be a pasture. Then

$$\begin{array}{rcl} \mathsf{Mat}(r,E)(F) & \longrightarrow & \left\{F\text{-matroids of rank } r \text{ on } E\right\}\\ \chi: \mathsf{Spec} \ F \to \mathsf{Mat}(r,E) & \longmapsto & [\chi^{\#} \circ \Delta_{\mathsf{univ}}] \end{array}$$

is a bijection.

Part 4: Foundations of matroids

The universal pasture

In the case $F = \mathbb{K}$, we obtain a bijection

$$\Big\{ \text{matroids of rank } r \text{ on } E \Big\} \iff \operatorname{Mat}(r, E)(\mathbb{K}),$$

which associates with a matroid M a morphism χ_M : Spec $\mathbb{K} \to Mat(r, E)$. Let $x_M \in Mat(r, E)$ be the image point of χ_M .

The **universal pasture** of *M* is the "residue field" k_M of Mat(r, E) at x_M . It is indeed a pasture.

First application: realization spaces

Let *M* be a matroid and *k* a field with terminal map $t_k : k \to \mathbb{K}$. The realization space of *M* over *k* is

$$\mathcal{X}_M(k) = \Big\{ [\Delta] \in \operatorname{Gr}(r, n)(k) \, \Big| \, M = [t_k \circ \Delta] \Big\}.$$

Universality theorem (Mnev / Lafforgue / Vakil) $\mathcal{X}_M(k)$ can be arbitrarily complicated (for fixed k and varying M).

Theorem (BL18)

Let k_M be the universal pasture of M. Then there exists a canonical bijection $\mathcal{X}_M(k) \to \text{Hom}(k_M, k)$.

Corollary

M is representable over $k \Leftrightarrow$ there is a morphism $k_M \rightarrow k$.

An observation

For many pastures F with terminal map $t_F : F \to \mathbb{K}$ the following is true: given a matroid M and a nonzero map $\Delta : {E \choose r} \to F$ such that $M = [t_F \circ \Delta]$, then Δ is a Grassmann-Plücker function if it satisfies the 3-term Plücker relations, i.e.

$$\sum_{k=1}^{r+1} \epsilon^k \Delta_{I \cup \{j_k\}} \Delta_{J - \{j_k\}} \in N_F$$

for all $I, J \subset E$ with #I = r - 1, $J = \{j_1, \ldots, j_{r+1}\}$ where $j_1 < \ldots < j_{r+1}$ such that $\#I \cap J = r - 2$.

For the purpose of this talk, we call a pasture with this property a **perfect pasture**.

Examples of perfect pastures are fields, \mathbb{K} , \mathbb{S} and \mathbb{F}_1^{\pm} .

The foundation

The weak universal pasture k_M^w of M is defined like the universal pasture k_M , but only taken the 3-term Plücker relations into account.

The **foundation** of *M* is the subpasture k_M^f of k_M^w that is defined by the *cross ratios*, which are terms like

$$\frac{T_{1,3} \cdot T_{2,4}}{T_{1,4} \cdot T_{2,3}}$$

(in the case $E = \{1, 2, 3, 4\}$ and r = 2).

Proposition (Wenzel '91 / BL18)

 k^f_M is the "constant field" of $k^w_M,$ i.e. the smallest subpasture of k^w_M such that

- $(k_M^w)^{\times}/(k_M^f)^{\times}$ is a free abelian group and
- $N_{k_M^w}$ is "generated" by $N_{k_M^f}$.

Application: Tutte's theorem

Theorem (BL18)

Let M be a matroid with foundation k_M^f and F a perfect pasture. Then M is representable over F if and only if there is a morphism $k_M^f \to F$.

Theorem (BL18)

A matroid M is

- regular if and only if $k_M^f = \mathbb{F}_1^{\pm}$;
- binary if and only if $k_M^f = \mathbb{F}_1^{\pm}$ or \mathbb{F}_2 .

Theorem (Tutte '58)

A matroid M is regular if and only if it is binary and orientable.

Proof.

M is binary and orientable $\Leftrightarrow k_M^f = \mathbb{F}_1^{\pm}$ or \mathbb{F}_2 , and M is orientable $\Leftrightarrow k_M^f = \mathbb{F}_1^{\pm}$ (there is no morphism $\mathbb{F}_2 \to \mathbb{S}$) $\Leftrightarrow M$ is regular