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Blueprints

De�nition
A blueprint is a commutative monoid A together with a pre-addition

R = {∑ai ≡ ∑bj |ai ,bj ∈ A}, which is a set that satis�es1

1. R is an equivalence relation on N[A] = {∑ai |ai ∈ A}, and

2. R is additive and multiplicative, i.e. if ∑ai ≡ ∑bj and

∑ck ≡ ∑dl , then ∑ai + ∑ck ≡ ∑bj + ∑dl and ∑aick ≡ ∑bjdl .

Remark
Axioms 1 and 2 are equivalent to the existence of the quotient

B+ = N[A]/R as a semiring.

We write B = A�R, and a ∈ B for a ∈ A.

Given a set S = {∑ai ≡ ∑bj}, we denote the smallest pre-addition

containing S by R = 〈S〉.

1Sometimes a blueprint is assumed to satisfy additional axioms. For the sake

of a simpli�ed presentation, we allow ourselves to be slightly unprecise here.



Examples

Monoids:

A commutative monoid A de�nes the blueprint B = A�〈 /0〉.
Semirings:

A commutative semiring R de�nes the blueprint B = R•�R where

R• is the underlying monoid of R and

R = {∑ai ≡ ∑bj |∑ai = ∑bj in R}.
Universal ring B+

Z :

Given a blueprint B = A�R, we can de�ne the universal ring

B+
Z = Z[A] /

{
∑ai −∑bj

∣∣ ∑ai ≡∑bj in B
}
.

We obtain a commutative diagram

Monoids
A 7−→ A�〈 /0〉 //

−⊗F1Z **UUUUUUUUUUUUUUUUUUUU Blueprints

(−)+Z
��

Rings



Examples

Special linear group:

De�ne the blueprint

F1[SL2] = F1[T1,T2,T3,T4]�〈T1T4 ≡ T2T3 +1〉

where

F1[T1,T2,T3,T4] = {T n1
1
T n2
2
T n3
3
T n4
4
|ni ≥ 0}

is the monoid of all monomials in the Ti .

Then F1[SL2]+Z = Z[SL2] is the coordinate ring of the Chevalley

group scheme SL2,Z.



Blue schemes

There are straight forward generalizations of the following notions

from rings and monoids to blueprints:

I prime ideals

I localizations

I the spectrum of a blueprint

I locally blueprinted spaces

I blue schemes

The category of blue schemes contains usual schemes, F1-schemes

(after Deitmar) and objects like SL2,F1 = SpecF1[SL2] or semiring

schemes.



SpecZ

We can de�ne the �compacti�cation� SpecZ of SpecZ as the

following locally blueprinted space (X ,OX ).

The points p ∈ X correspond to the places | |p of Q (if p is a �nite

prime or ∞) and to the discrete norm | |
0
(if p = 0). The points

p > 0 are closed, and 0 is the generic point of X . For a non-empty

open subset U of X , we de�ne

OX (U) =

{
a

b
∈Q

∣∣∣∣ ∣∣∣ab ∣∣∣p ≤ 1 for all p ∈ U
}
// 〈1+ (−1)≡ 0〉.

Theorem (L.)

The arithmetic line SpecZ is 1-dimensional, while the arithmetic

surface SpecZ⊗F1 SpecZ is 2-dimensional.



K -theory

There is a straight forward de�nition of a vector bundle over a blue

scheme X as a locally free sheaf. The notion of short exact

sequences turns the category BunX into a quasi-exact category.

Theorem (Chu�L.�Santhanam, 2012)

The associated spectrum K (X ) = Ω |S•Bun(X )| is a symmetric

ring spectrum.

The K -theory of X is de�ned as Ki (X ) = πsti (K (X )).

Theorem (Folklore, Deitmar, Chu�L.�Santhanam)

The symmetric ring spectrum K (F1) is weakly homotopy

equivalent to the sphere spectrum S0. This induces a ring

isomorphism K∗(F1)' πst∗ (S0).



The Tits category

One can endow blue schemes with the class of Tits morphisms,

which de�nes the Tits category SchT . It comes together with

certain base extensions

SchQ SchFp · · ·

Sets SchZ

IIIII
xxxxxx

tropical geometry

SchN

33hhhhhhh //_____

++VVVVVVV idempotent analysis

SchT

W

66666666666

(−)+Z

ttttttttttttttt (−)+

jjjjjjjjjjjj
total positivity

where W : SchT → Sets is called the Weyl extension.

All base extensions send group objects (resp. monoids) to group

objects (resp. monoids).



Tits-Weyl models

De�nition
Let G be a Chevalley group scheme with Weyl group W . A

Tits-Weyl model of G is a monoid G in SchT such that

1. G+
Z is isomorphic to G as a group scheme,

2. W (G ) is isomorphic to W as a group, and

3. a certain compatibility condition is satis�ed.

Theorem (L., 2012)

Let G be one of the following:

I GL(n), SL(n), Sp(2n), SO(2n+1), SO(2n),

I an adjoint Chevalley group scheme, or

I a split Levi subgroup of one of the above.

Then G has a Tits-Weyl model.



Total positivity

For all I ,J ⊂ {1, . . . ,n} with #I = #J, we can consider the minor

∆I ,J(Tij) = det
(
Tij |i ∈ I , j ∈ J

)
,

as an element of Z[SLn] = Z[Tij |i , j = 1, . . . ,n]/
(
det(Tij)−1

)
.

Since the set of all minors generate Z[SLn], we have

Z[SLn] = Z[∆I ,J |I ,J ⊂ {1, . . . ,n}] / (relations between the ∆I ,J).

These relations de�ne a pre-addition R on the monoid F1[∆I ,J ],
and thus a blueprint F1[SLn] = F1[∆I ,J ]�R.

Theorem (López Peña�L.�Reineke, work in progress)

The blue scheme SLn,F1 = SpecF1[SLn] has the unique structure of

a Tits-Weyl model. It satis�es that SLn,F1(R≥0) is the semigroup of

all totally nonnegative matrices (in the sense of Fomin-Zelevinsky).



Quiver Grassmannians
kd1

fα // kd2
fβ //
fγ

// kd3 M

Q 1
α // 2

β //
γ

// 3

Let k be a ring. A quiver is a �nite directed graph Q. A quiver

representation M over k consists of a free k-module kdi for every

vertex i of Q and a linear map fα : kdi → kdj for every arrow

α : i → j in Q. Let d = (di )i∈Q be the dimension vector.

For e = (ei )i∈Q with 0≤ ei ≤ di , we de�ne the quiver Grassmannian

Gre(M,k) = { subrepresentations N ⊂M | dimN = e },

which turns out to be the set of k-rational points of a projective

k-scheme Gre(M)k .

Theorem (Reineke, 2012)

Every projective variety over k can be represented as a quiver

Grassmannian.



F1-points of quiver Grassmannians

Let k = Z. Denote the standard basis vectors of Zdi by ei ,r . The

set ∗Gre(M,F1)∗ of � F1-rational points� of Gre(M)Z is the set of

all subrepresentations N ⊂M of dimension dimN = e such that

1. Ni is spanned by {ei ,r}∩Ni for every i ∈ Q, and

2. fα(ei ,r ) ∈ {ej ,s}∪{0} for all α : i → j and ei ,r ∈ Ni .

Theorem (L.)

There is a canonical blue scheme Gre(M)F1 of �nite type over F1

such that Gre(M)Z =
(
Gre(M)F1

)+
Z . There is a canonical inclusion

ι : ∗Gre(M,F1)∗ ↪→ W (Gre(M)F1),

which is a bijection if #f −1α (ej ,s)≤ 1 for all α : i → j and ej ,s ∈ Nj .

If furthermore Q is acyclic, then the Euler characteristic of

Gre(M,C) equals #W (Gre(M)F1) (by a result of Cerulli-Irelli).


