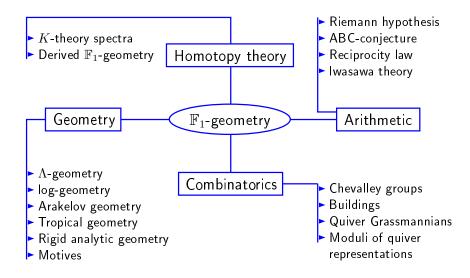
\mathbb{F}_1 -geometry and its applications

Oliver Lorscheid (IMPA)

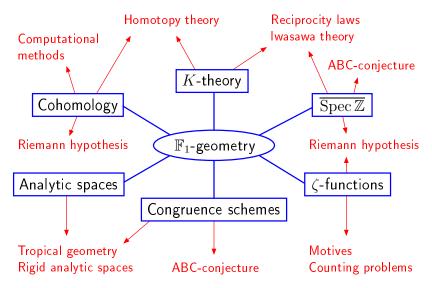
6ECM, Kraków 2012

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Applications



The tools



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Blueprints

Definition

A blueprint is a commutative monoid A together with a pre-addition $\mathscr{R} = \{\sum a_i \equiv \sum b_j | a_i, b_j \in A\}$, which is a set that satisfies¹

1. \mathscr{R} is an equivalence relation on $\mathbb{N}[A] = \{\sum a_i | a_i \in A\}$, and

2. \mathscr{R} is additive and multiplicative, i.e. if $\sum a_i \equiv \sum b_j$ and $\sum c_k \equiv \sum d_l$, then $\sum a_i + \sum c_k \equiv \sum b_j + \sum d_l$ and $\sum a_i c_k \equiv \sum b_j d_l$.

Remark

Axioms 1 and 2 are equivalent to the existence of the quotient $B^+ = \mathbb{N}[A]/\mathscr{R}$ as a semiring.

We write $B = A /\!\!/ \mathscr{R}$, and $a \in B$ for $a \in A$. Given a set $S = \{\sum a_i \equiv \sum b_j\}$, we denote the smallest pre-addition containing S by $\mathscr{R} = \langle S \rangle$.

¹Sometimes a blueprint is assumed to satisfy additional axioms. For the sake of a simplified presentation, we allow ourselves to be slightly unprecise here.

Examples

Monoids:

A commutative monoid A defines the blueprint $B = A /\!\!/ \langle \emptyset \rangle$.

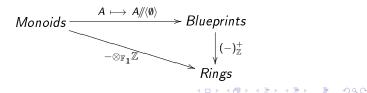
Semirings:

A commutative semiring R defines the blueprint $B = R^{\bullet} /\!\!/ \mathscr{R}$ where R^{\bullet} is the underlying monoid of R and $\mathscr{R} = \{\sum a_i \equiv \sum b_i | \sum a_i = \sum b_i \text{ in } R \}.$

Universal ring $B_{\mathbb{Z}}^+$: Given a blueprint $B = A /\!\!/ \mathscr{R}$, we can define the universal ring

$$B^+_{\mathbb{Z}} = \mathbb{Z}[A] / \{ \sum a_i - \sum b_j \mid \sum a_i \equiv \sum b_j \text{ in } B \}.$$

We obtain a commutative diagram



Examples

Special linear group: Define the blueprint

$$\mathbb{F}_{1}[\mathsf{SL}_{2}] = \mathbb{F}_{1}[T_{1}, T_{2}, T_{3}, T_{4}] / \!\!/ \langle T_{1} T_{4} \equiv T_{2} T_{3} + 1 \rangle$$

where

$$\mathbb{F}_1[T_1, T_2, T_3, T_4] = \{T_1^{n_1} T_2^{n_2} T_3^{n_3} T_4^{n_4} | n_i \ge 0\}$$

is the monoid of all monomials in the T_i .

Then $\mathbb{F}_1[SL_2]_{\mathbb{Z}}^+=\mathbb{Z}[SL_2]$ is the coordinate ring of the Chevalley group scheme $SL_{2,\mathbb{Z}}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Blue schemes

There are straight forward generalizations of the following notions from rings and monoids to blueprints:

- prime ideals
- Iocalizations
- the spectrum of a blueprint
- Iocally blueprinted spaces
- blue schemes

The category of blue schemes contains usual schemes, \mathbb{F}_1 -schemes (after Deitmar) and objects like $SL_{2,\mathbb{F}_1} = Spec \mathbb{F}_1[SL_2]$ or semiring schemes.

Spec ℤ

We can define the "compactification" $\overline{\text{Spec}\mathbb{Z}}$ of $\text{Spec}\mathbb{Z}$ as the following locally blueprinted space (X, \mathscr{O}_X) .

The points $p \in X$ correspond to the places $| |_p$ of \mathbb{Q} (if p is a finite prime or ∞) and to the discrete norm $| |_0$ (if p = 0). The points p > 0 are closed, and 0 is the generic point of X. For a non-empty open subset U of X, we define

$$\mathscr{O}_X(U) \ = \ \left\{ \ \frac{a}{b} \in \mathbb{Q} \ \left| \ \left| \frac{a}{b} \right|_p \leq 1 \text{ for all } p \in U \ \right\} \ /\!\!/ \ \langle 1 + (-1) \equiv 0 \rangle.$$

Theorem (L.)

The arithmetic line $\overline{\text{Spec }\mathbb{Z}}$ is 1-dimensional, while the arithmetic surface $\overline{\text{Spec }\mathbb{Z}} \otimes_{\mathbb{F}_1} \overline{\text{Spec }\mathbb{Z}}$ is 2-dimensional.

K-theory

There is a straight forward definition of a vector bundle over a blue scheme X as a locally free sheaf. The notion of short exact sequences turns the category Bun X into a quasi-exact category.

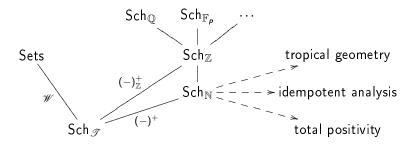
Theorem (Chu–L.–Santhanam, 2012)

The associated spectrum $\mathscr{K}(X) = \Omega |S_{\bullet} \operatorname{Bun}(X)|$ is a symmetric ring spectrum.

The K-theory of X is defined as $K_i(X) = \pi_i^{st}(\mathscr{K}(X))$. Theorem (Folklore, Deitmar, Chu–L.–Santhanam) The symmetric ring spectrum $\mathscr{K}(\mathbb{F}_1)$ is weakly homotopy equivalent to the sphere spectrum \mathbb{S}^0 . This induces a ring isomorphism $K_*(\mathbb{F}_1) \simeq \pi_*^{st}(\mathbb{S}^0)$.

The Tits category

One can endow blue schemes with the class of *Tits morphisms*, which defines the *Tits category* $Sch_{\mathscr{T}}$. It comes together with certain base extensions



where $\mathscr{W} : \operatorname{Sch}_{\mathscr{T}} \to \operatorname{Sets}$ is called the *Weyl extension*.

All base extensions send group objects (resp. monoids) to group objects (resp. monoids).

Tits-Weyl models

Definition

Let \mathscr{G} be a Chevalley group scheme with Weyl group W. A *Tits-Weyl model* of \mathscr{G} is a monoid G in Sch $_{\mathscr{T}}$ such that

- 1. $G_{\mathbb{Z}}^+$ is isomorphic to \mathscr{G} as a group scheme,
- 2. $\mathscr{W}(G)$ is isomorphic to W as a group, and
- 3. a certain compatibility condition is satisfied.

Theorem (L., 2012)

Let \mathscr{G} be one of the following:

- ► GL(n), SL(n), Sp(2n), SO(2n+1), SO(2n),
- an adjoint Chevalley group scheme, or
- a split Levi subgroup of one of the above.

Then *G* has a Tits-Weyl model.

Total positivity

For all $I, J \subset \{1, \ldots, n\}$ with #I = #J, we can consider the minor

$$\Delta_{I,J}(T_{ij}) = \det(T_{ij}|i \in I, j \in J),$$

as an element of $\mathbb{Z}[SL_n] = \mathbb{Z}[T_{ij}|i, j = 1, ..., n]/(\det(T_{ij}) - 1)$. Since the set of all minors generate $\mathbb{Z}[SL_n]$, we have

 $\mathbb{Z}[\mathsf{SL}_n] \; = \; \mathbb{Z}[\Delta_{I,J}|I, J \subset \{1, \dots, n\}] \; / \; (\text{relations between the } \Delta_{I,J}).$

These relations define a pre-addition \mathscr{R} on the monoid $\mathbb{F}_1[\Delta_{I,J}]$, and thus a blueprint $\mathbb{F}_1[SL_n] = \mathbb{F}_1[\Delta_{I,J}]/\!\!/\mathscr{R}$.

Theorem (López Peña-L.-Reineke, work in progress)

The blue scheme $SL_{n,\mathbb{F}_1} = Spec \mathbb{F}_1[SL_n]$ has the unique structure of a Tits-Weyl model. It satisfies that $SL_{n,\mathbb{F}_1}(\mathbb{R}_{\geq 0})$ is the semigroup of all totally nonnegative matrices (in the sense of Fomin-Zelevinsky).

Quiver Grassmannians

$$k^{d_1} \xrightarrow{f_{\alpha}} k^{d_2} \xrightarrow{f_{\beta}} k^{d_3} \qquad M$$
$$Q \qquad 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

Let k be a ring. A quiver is a finite directed graph Q. A quiver representation M over k consists of a free k-module k^{d_i} for every vertex i of Q and a linear map $f_{\alpha} : k^{d_i} \to k^{d_j}$ for every arrow $\alpha : i \to j$ in Q. Let $\underline{d} = (d_i)_{i \in Q}$ be the dimension vector.

For $\underline{e} = (e_i)_{i \in Q}$ with $0 \le e_i \le d_i$, we define the *quiver Grassmannian*

$$\operatorname{Gr}_{\underline{e}}(M,k) = \{ \text{ subrepresentations } N \subset M \mid \underline{\dim}N = \underline{e} \},\$$

which turns out to be the set of k-rational points of a projective k-scheme $\operatorname{Gr}_{\underline{e}}(M)_k$.

Theorem (Reineke, 2012)

Every projective variety over k can be represented as a quiver Grassmannian.

$\mathbb{F}_1\text{-}\mathsf{points}$ of quiver Grassmannians

Let $k = \mathbb{Z}$. Denote the standard basis vectors of \mathbb{Z}^{d_i} by $e_{i,r}$. The set $*\operatorname{Gr}_{\underline{e}}(M, \mathbb{F}_1)^*$ of " \mathbb{F}_1 -rational points" of $\operatorname{Gr}_{\underline{e}}(M)_{\mathbb{Z}}$ is the set of all subrepresentations $N \subset M$ of dimension $\underline{\dim}N = \underline{e}$ such that

1. N_i is spanned by $\{e_{i,r}\} \cap N_i$ for every $i \in Q$, and

2. $f_{\alpha}(e_{i,r}) \in \{e_{j,s}\} \cup \{0\}$ for all $\alpha : i \rightarrow j$ and $e_{i,r} \in N_i$.

Theorem (L.)

There is a canonical blue scheme $\operatorname{Gr}_{\underline{e}}(M)_{\mathbb{F}_1}$ of finite type over \mathbb{F}_1 such that $\operatorname{Gr}_{\underline{e}}(M)_{\mathbb{Z}} = (\operatorname{Gr}_{\underline{e}}(M)_{\mathbb{F}_1})_{\mathbb{Z}}^+$. There is a canonical inclusion

$$\iota: \ ^*\mathrm{Gr}_{\underline{e}}(M, \mathbb{F}_1)^* \quad \hookrightarrow \quad \mathscr{W}(\mathrm{Gr}_{\underline{e}}(M)_{\mathbb{F}_1}),$$

which is a bijection if $\#f_{\alpha}^{-1}(e_{j,s}) \leq 1$ for all $\alpha : i \to j$ and $e_{j,s} \in N_j$. If furthermore Q is acyclic, then the Euler characteristic of $\operatorname{Gr}_{\underline{e}}(M,\mathbb{C})$ equals $\#\mathscr{W}(\operatorname{Gr}_{\underline{e}}(M)_{\mathbb{F}_1})$ (by a result of Cerulli-Irelli).