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Chapter 1

Rings

1.1 Commutative groups and monoids
Definition 1.1.1. A commutative group (or abelian group) is a set G together with a
binary operation, which is a map

µ : G×G −→ G,
(a,b) 7−→ ab = a ·b

such that the following axioms hold:

(1) (ab)c = a(bc) for all a,b,c ∈ G, (associativity)

(2) ab = ba for all a,b ∈ G, (commutativity)

(3) there is an e ∈ G such that ae = a for all a ∈ G, (neutral element)

(4) for every a ∈ G, there is a b ∈ G such that ab = e (inverses)

where (ab)c = µ(µ(a,b),c) and a(bc) = µ(a,µ(b,c)). A commutative monoid is a set
G together with a map µ : G×G→ G that satisfies (1)–(3).

Remark. A group is a set G together with a map µ : G×G→ G that satisfies axioms
(1), (3) and (4). We restrict ourselves to commutative groups in this section since we
do not need the more complex and intriguing concept of a group for most parts of this
course. For its importance for subsequent courses, we review the fundamental results
from group theory at a later point of this course; cf. Chapter 5.

Lemma 1.1.2. Let G be a set and µ : G×G→G a binary operation that satisfies axioms
(1) and (2). Then there is at most one e ∈ G such that ae = a for all a ∈ G. If such a
neutral element e exists, then there is at most one b for every a such that ab = e.

Proof. Assume that (3) is satisfied for e and e′. Then e = ee′ = e′e = e′, as claimed.
Assume that ab = ab′ = e for a neutral element e ∈ G. Then b = be = bab′ = b′ab =
b′e = b′, as claimed.
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6 Rings

Notation. Typically, we suppress the multiplication µ of a commutative group (or
monoid) and simply refer to a commutative group (or monoid) by the underlying set G.
In situation where we want to specify the operation, we refer to a commutative group
(or monoid) by (G,µ) or (G, ·). Sometimes it is more natural to denote the operation of
the group by “+”. All these different notations are illustrated in Example 1.1.3.

Note that the associativity (1) allows us to write terms like abc without ambiguity.
Using commutativity multiple times allows us to reorder the terms in any expression
arbitrarily, e.g. abc = cba.

We typically denote the neutral element e by 1 and the inverse of a by a−1 if the
binary operation µ is multiplication “·”. If µ is addition “+”, then we denote the neutral
element by 0 and the inverse of a by −a. By the following fact, the neutral element and
inverses are unique.

Example 1.1.3. In the following, we give a series of examples of commutative groups
and monoids.

(1) The integers Z together with addition + forms a commutative group. The neutral
element is 0 and the (additive) inverse of a ∈ Z is −a. The integers Z together
with multiplication · form a commutative monoid whose neutral element is 1. The
only elements with (multiplicative) inverses are 1 and −1.

(2) The natural numbers N together with addition form a commutative monoid with
neutral element 0, which is not a commutative group since −a is not in N unless
a = 0. Also (N, ·) is a commutative monoid.

(3) The rational numbers Q together with addition + form a commutative group as
well as the positive rational numbers Q>0 together with multiplication.

(4) The complex numbers
{

z ∈C
∣∣ |z|= 1

}
of absolute value 1 together with multipli-

cation · form a commutative group, but (C, ·) is only a commutative monoid.

We summarize this in Table 1.1.

commutative group? commutative monoid?
(Z,+) X X
(Z, ·) no inverses X
(N,+) no inverses X
(N, ·) no inverses X
(Q,+) X X
(Q>0, ·) X X(

{z ∈ C | |z|= 1}, ·
)

X X
(C, ·) no inverses X

Table 1.1: Examples of commutative groups and monoids

Definition 1.1.4. Let G be a commutative group. A subgroup of G is a nonempty
subset H of G such that ab−1 ∈ H for all a,b ∈ H.
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Lemma 1.1.5. Let G be a commutative group and H a subset. Then H is a subgroup
if and only if the multiplication µ of G restricts to a map µH : H×H → H such that
(H,µH) is a commutative group.

Proof. The proof is left as Exercise 1.1.

We continue with the definition of the quotient of a commutative group G by a
subgroup H. Since most applications of this construction in this lecture concerns
additive groups, i.e. the group operation is addition µ(a,b) = a+b, we formulate this
result for additive groups.

Definition 1.1.6. Let (G,+) be a commutative group, a ∈ G and H a subgroup. The
coset of H in G with respect to a is the subset

[a] = a+H = {a+h ∈ G |h ∈ H}

of G. The quotient of G by H is the set G/H = {[a] |a ∈ G} of cosets of H.

Proposition 1.1.7 (Universal property of quotient groups). Let (G,+) be a commutative
group and H a subgroup.

(1) Let a,b ∈ G. The following are equivalent:

(a) [a] = [b];
(b) a ∈ [b];
(c) [a]∩ [b] 6=∅;
(d) a−b ∈ H.

(2) The map
[+] : G/H×G/H −→ G/H

([a], [b]) 7−→ [a+b]

is well defined, and (G/H, [+]) is a commutative group.

Proof. We begin with proving the equivalence of the affirmations in (1). Assume
(1a). Then a = a+ e ∈ [a] = [b], thus (1b). Since a = a+ e ∈ [a], (1b) implies (1c).
Assume (1c). Then there is a c ∈ [a]∩ [b], i.e. c = a+ h = b+ h′ for some h,h′ ∈ H.
Thus a− b = h′− h ∈ H, which implies (1d). Assume (1d), i.e. h = a− b ∈ H, and
consider a+h′ ∈ [a] for some h′ ∈ H. Since a = b+h and h+h′ ∈ H, this implies that
a+h′ = b+h+h′ ∈ [b], which shows that [a]⊂ [b]. By the symmetry of the argument,
we conclude that [a] = [b], which shows (1a). This completes the proof of (1).

We continue with the proof of (2). To establish that [+] is well-defined, consider
cosets [a] = [a′] and [b] = [b′] of H in G, i.e. a′= a+h and b′= b+h′ for some h,h′ ∈H.
Then a′+b′− (a+b) = h+h′ ∈ H, which means by (1) that [a′+b′] = [a+b]. This
shows that the definition of [+] does not depend on the choice of representative, i.e. [+]
is well-defined.
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We verify that (G/H, [+]) satisfies the axioms of a commutative group. Associativity
follows from

(
[a][+][b]

)
[+][c] = [(a+b)+ c] = [a+(b+ c)] = [a][+]

(
[b][+][c]

)
,

commutativity follows from

[a][+][b] = [a+b] = [b+a] = [b][+][a],

the neutral element is [e] since

[a][+][e] = [a+ e] = [a]

and the inverse of [a] is [−a] since

[a][+][−a] = [a−a] = [e]

where a, b and c are arbitrary elements of G.

Notation. In the following, we denote the addition of the quotient G/H simply by “+”,
i.e. we write [a]+ [b] = [a+b]. Sometimes we write ā for [a].

Example 1.1.8. We give some examples of subgroups and quotient groups.

(1) Let G be a commutative group. Then {0} and G are subgroups, which are called
the trivial subgroup and the improper subgroup, respectively. The quotient
G/{0} can be identified with G itself since [a] = [b] if and only if a = b. The
quotient G/G is equal to {[e]} since [a] = [e] for all a ∈ G.

(2) For every n > 0, the subset Z = {na|a ∈ Z} of Z is a subgroup of (Z,+). We
have an equality [a] = [b] of cosets of nZ if and only if a−b ∈ nZ, i.e. a−b is
divisible by n. For n = 0, we find the trivial subgroup 0Z= {0} and the quotient
Z/0Z= Z. For n = 1, we find the improper subgroup 1Z= Z and the quotient
Z/1Z= {[0]}. For n> 1, the quotient Z/nZ= {[a]|a ∈ Z} consists of the cosets
[0], . . . , [n−1], and the addition of Z/nZ is addition modulo n, i.e.

[a]+ [b] =

{
[a+b] if a+b < n,
[a+b−n] if a+b> n.

1.2 Rings, integral domains and fields
Definition 1.2.1. A (commutative) ring (with one) is a set A together with two binary
operations

α : A×A −→ A
(a,b) 7−→ a+b and

µ : A×A −→ A
(a,b) 7−→ ab = a ·b

such that
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(1) (A,+) is a commutative group,

(2) (A, ·) is a commutative monoid,

(3) a(b+ c) = ab+ac for all a,b,c ∈ A (distributivity)

where a(b+ c) = µ
(
a,α(b,c)

)
and ab+ac = α

(
µ(a,b),µ(a,c)

)
(i.e. multiplication is

evaluated before addition).

Notation. For the purpose of these lectures, we assume that all rings are commutative
and with one, unless stated otherwise. The binary operation α is called the addition of
A and µ its multiplication. Often we suppress the binary operations from the notation
of a ring A, but in instances where we want to explicitly refer to the addition + and the
multiplication · by (A,+, ·); cf. Example 1.2.3 for some instances.

We denote the neutral element for the addition by 0 and the additive inverse of an
element a by −a. We write a− b for a+(−b). We denote the neutral element for
multiplication by 1 and the multiplicative inverse of an element a by a−1 if it exists.
Note that by Lemma 1.1.2, all these elements are unique and thus these notations are
well-defined.

Lemma 1.2.2. The following hold true for every ring A.

(1) We have −0 = 0, 0 ·a = 0 and −a = (−1) ·a for all a ∈ A, as well as (−1)2 = 1.

(2) If a−b = 0, then a = b.

(3) If 0 = 1, then A = {0}.
(4) If a,b ∈ A have multiplicative inverses a−1 and b−1, then a−1b−1 is a multiplica-

tive inverse of ab.

Proof. We begin with (1). Since 0+ 0 = 0, we have 0 = −0 by the uniqueness of
(additive) inverses. For a ∈ A, we have 0 · a+ 0 · a = (0+ 0)a = 0 · a and thus, after
adding −0 ·a to both sides, 0 ·a = 0, as claimed. In consequence, 0 = 0 ·a = (1−1)a =
1 ·a+(−1) ·a and thus −a = (−1) ·a by the uniqueness of (additive) inverses. Finally,
we have 0 = 0 · (−1) = (1− 1) · (−1) = 1 · (−1)+ (−1) · (−1) = (−1)+ (−1)2 and
thus (−1)2 = 1 by the uniqueness of the (additive) inverse of −1, which establishes all
claims of (1).

We turn to (2)–(4). If a−b = 0, then a =−(−b), and thus a = (−1) · (−1) ·b = b
by (1), which establishes (2). If 0 = 1, then 0 = 0 ·a = q ·a = a for all a ∈ A and thus
A = {0}, which establishes (3). Finally, (4) follows from (ab)(a−1b−1) = aa−1bb−1 =
1 ·1 = 1.

Example 1.2.3. In the following, we discuss a series of examples and non-examples.

(0) The trivial ring A = {0} with one element 0 = 1 and the tautological addition
0+0 = 0 and multiplication 0 ·0 = 0 forms a ring.

(1) The integers Z together with the usual addition and multiplication form a ring.
The same is true for the rational numbers (Q,+, ·), the real numbers (R,+, ·) and
the complex numbers (C,+, ·). The natural numbers (N,+, ·) do not form a ring
for the lack of additive inverses.
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(2) Polynomials over rings from rings. For example the set R[T ] of polynomials
anT n+ · · ·+a1T +a0 with real coefficients a0, . . . ,an ∈R, together with the usual
addition and multiplication of polynomials, forms a ring.

(3) The set R×R of pairs (a,b) of real numbers a,b ∈ R, together with component-
wise addition and multiplication, forms a ring.

(4) The set of n×n-matrices Matn(A) with coefficients in a ring A does not form a
(commutative) ring for n > 1 since the multiplication of matrices is not commuta-
tive.

(5) The set Cc(R,R) of compactly supported (continuous / differentiable / smooth)
functions f : R→ R, together with valuewise addition and multiplication, do not
form a ring (with one) for the lack of a multiplicatively neutral element. To wit,
the constant function c1 : R→ R that sends every a ∈ R to c1(a) = 1 would be
neutral for multiplication, but it does not have compact support.

Definition 1.2.4. Let A be a ring. A subring of A is a subset B of A such that 1 ∈ B and
a−b,ab ∈ B for all a,b ∈ B. The unit group of A is the set A× of all elements a ∈ A
with a multiplicative inverse a−1. A ring A is

• without zero divisors if ab 6= 0 for all a,b ∈ A−{0};
• an integral domain if 0 6= 1 and if the multiplication map

ma : A −→ A
b 7−→ ab

is injective for every a ∈ A−{0};
• a field if A× = A−{0}, i.e. 0 6= 1 and every nonzero element has a multiplicative

inverse.

Remark. Let B⊂ A be a subring of A. Then both addition α and multiplication µ of A
restrict to maps αB : B×B→ B and µB : B×B→ B that endow B with the structure of a
ring, which justifies the term ‘subring’. We leave a verification of this claim as Exercise
1.5.

By Lemma 1.2.2, the multiplication µ of a ring A restricts to a map µ× : A××A×→
A×, which turns A× into a commutative group. This justifies the term ‘unit group’.

Lemma 1.2.5. Every field is an integral domain, and every integral domain is without
zero divisors. Conversely, a ring without zero divisors is an integral domain if 0 6= 1.

Proof. Let A be a field and a ∈ A−{0}. Consider b,b′ ∈ A such that ma(b) = ma(b′).
Since a has a multiplicative inverse a−1, we have b= a−1ab= a−1ma(b) = a−1ma(b′) =
a−1ab′= b′, which shows that ma is injective. Since 0 6= 1, this shows that A is an integral
domain.

Let A be an integral domain and a,b ∈ A with ab = 0, but a 6= 0. Then ma(b) =
ab = 0 = a ·0 = ma(0) and thus b = 0 by the injectivity of ma. Thus A is without zero
divisors.
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Let A be without zero divisors, 0 6= 1 and a ∈ A−{0}. If ma(b) = ma(b′), then
ab = ab′ and thus a(b−b′) = ab−ab′ = 0. Since A is without zero divisors, we must
have b−b′ = 0 and thus b = b′. This shows that ma is injective and that A is an integral
domain.

Example 1.2.6. We summarize which rings from Example 1.2.3 are without zero
divisors, integral domains and fields in Table 1.2. The validity or failure of the defining
properties of these particular types of rings can also be determined for the examples that
are not rings, and we provide such an answer in brackets.

ring? without zero divisors? integral domain? field?
{0} X X no no
Z X X X no
Q X X X X
R X X X X
C X X X X

R[T ] X X X no
R×R X no no no
N no additive inverses (X) (X) (no)

Matn(A) not commutative (no) (no) (no)
Cc(R,R) without one (no) (no) (no)

Table 1.2: Examples of rings

1.3 Ideals and quotients
Definition 1.3.1. Let A and B be rings. A ring homomorphism from A to B is a map
f : A→ B such that f (1) = 1, f (a+ b) = f (a)+ f (b) and f (ab) = f (a) f (b) for all
a,b ∈ A. An isomorphism of rings is a bijective ring homomorphism.

Lemma 1.3.2. Let A, B and C be rings. Then the following hold true.

(1) The identity map idA : A→ A is a ring homomorphism.

(2) The composition g◦ f : A→C of two ring homomorphisms f : A→B and g : B→C
is a ring homomorphism.

(3) Given a ring homomorphism f : A→ B and a ∈ A, we have f (0) = 0, f (−a) =
− f (a) and f (a−1) = f (a)−1, provided a has a multiplicative inverse a−1.

(4) A ring homomorphism f : A→ B is injective if and only if f−1(0) = {0}.
(5) The image im f = { f (a)|a ∈ A} of a ring homomorphism f : A→ B is a subring

of B.

(6) A ring homomorphism f : A→ B is an isomorphism if and only if there is a ring
homomorphism g : B→ A such that g◦ f = idA and f ◦g = idB.
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Proof. The proof is left as Exercise 1.8.

Definition 1.3.3. Let A be a ring. An ideal of A is a subset I of A that contains 0, b+ c
and ab for all a ∈ A and b,c ∈ I.

Let S be a subset of A. The ideal generated by S is the subset

〈S〉 =
{ n

∑
i=1

aisi

∣∣∣n> 1,ai ∈ A,si ∈ S
}

of A, with the convention that 〈∅〉= {0}. If S = {ai} we also write 〈ai〉= 〈S〉.

Remark. In other words, an ideal of A is an additive subgroup I of (A,+) such that
AI = I where AI = {ab|a ∈ A,b ∈ I}. Note that, in particular, a−b = a+(−1) ·b ∈ I
for all a,b ∈ I.

Lemma 1.3.4. Let A be a ring and S a subset of A. Then 〈S〉 is an ideal, and S = 〈S〉 if
and only if S is an ideal.

Proof. We begin with the proof that 〈S〉 is an ideal, which is clear in the case 〈∅〉= {0}.
Thus we assume that S 6= ∅ in the following. Clearly, 0 = 0 · s is in 〈S〉. Consider
∑n

i=1 aisi,∑m
i=1 biti ∈ 〈S〉 and c ∈ A. If we define aisi = bi−nsi−n for i = n+1, . . . ,n+m,

then both

( n

∑
i=1

aisi

)
+
( m

∑
i=1

biti
)

=
n+m

∑
i=1

aisi and c ·
( n

∑
i=1

aisi

)
=

n

∑
i=1

(cai)si

are in 〈S〉, which shows that 〈S〉 is an ideal. This also implies that if S = 〈S〉, then S is
an ideal.

Assume that S is an ideal. Clearly S⊂ 〈S〉. To show equality, we consider ∑n
i=1 aisi ∈

〈S〉 with ai ∈ A and si ∈ S. Since S is an ideal, we know that aisi ∈ S for all i = 1, . . . ,n.
Since S is an additive subgroup of A, it also contains the sum ∑n

i=1 aisi. Thus 〈S〉 ⊂ S,
which concludes the proof.

Example 1.3.5. We give some examples of ideals.

(1) Let A be a ring. Then subsets {0} and A are ideals of A, which are called the
trivial ideal and the improper ideal of A, respectively. For every a ∈ A, the ideal
generated by S = {a} equals

〈a〉 = {ab |b ∈ A}

and is called the principal ideal generated by a.

(2) In particular, for every n ∈ Z, the subset nZ= 〈n〉 is an ideal of Z.

(3) Another example of a principal ideal is the subset

〈(1,0)〉 =
{
(a,0) ∈ R×R

∣∣a ∈ R
}

of R×R.
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Definition 1.3.6. Let f : A→ B be a ring homomorphism. The kernel of f is the subset
ker f = {a ∈ A| f (a) = 0} of A.

Lemma 1.3.7. The kernel of a ring homomorphism f : A→ B is an ideal of A.

Proof. Since f (0) = 0, we have 0 ∈ ker f . Consider a ∈ A and b,c ∈ ker f , i.e. f (b) =
f (c) = 0. Then f (b+ c) = f (b)+ f (c) = 0 and f (ab) = f (a) f (b) = 0, which shows
that b+ c and ab are in ker f . Thus ker f is an ideal of A.

Proposition 1.3.8 (Universal property for quotient rings). Let A be a ring and I an
ideal of A. For a ∈ A, define [a] = {a+b ∈ A|b ∈ I} and A/I = {[a]|a ∈ A}. Then the
following hold true.

(1) The maps

[+] : A/I×A/I −→ A/I
([a], [b]) 7−→ [a+b] and

[·] : A/I×A/I −→ A/I
([a], [b]) 7−→ [ab]

are well-defined, and (A/I, [+], [·]) is a ring. The association a 7→ [a] defines a
ring homomorphism π : A→ A/I with kerπ = I.

(2) Let S be a subset of A. Then π : A→ A/〈S〉 satisfies the following universal
property: for every ring homomorphism f : A→ B with f (S) ⊂ {0}, there is a
unique ring homomorphism f̄ : A/〈S〉 → B such that f = f̄ ◦π, i.e. the diagram

A B

A/〈S〉

f

π
�

f̄

commutes.

Proof. Since an ideal is, in particular, an additive subgroup of (A,+), Proposition 1.1.7
shows that [+] is well-defined. We continue with [·]. Let [a] = [a′] and [b] = [b′], i.e. a′=
a+c and b′= b+d for c,d ∈ I. Then ad,bc,cd ∈ I and thus a′b′−ab= ad+bc+cd ∈ I,
which shows that [ab] = [a′b′], by Proposition 1.1.7, and that [·] is well-defined.

We continue with the verification that (A/I, [+], [·]) is a ring. By Proposition 1.1.7,
we know that (A/I, [+]) is a commutative group. That (A/I, [·]) is a commutative monoid
with neutral element [1] follows from

(
[a][·][b]

)
[·][c] = [(ab)c] = [a(bc)] = [a][·]

(
[b][·][c]

)
,

[a][·][b] = [ab] = [ba] = [b][·][a], and [a][·][e] = [ae] = [a]

where a, b and c are arbitrary elements of A. The distributivity of [·] over [+] follows
from

[a][·]
(
[b][+][c]

)
= [a(b+ c)] = [ab+ac] = [a][·][b][+][a][·][c],
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which concludes the proof that (a/I, [+], [·]) is a ring.
The claim that π : A→ A/I is a ring homomorphism follows from π(1) = [1] and

π(a+b) = [a+b] = [a][+][b] = π(a)[+]π(b),
π(ab) = [ab] = [a][·][b] = π(a)[·]π(b)

for all a,b ∈ A. By Proposition 1.1.7, (1), we have [0] = I and π(a) = [0] if and only if
a ∈ I. Thus π−1([0]) = I as claimed, which concludes the proof of (1)

We continue with the proof of (2). Given a ring homomorphism f : A→ B with
f (S) ⊂ {0}, we claim that the association [a] 7→ f (a) does not depend on the choice
of representative a ∈ [a] and defines a ring homomorphism A/〈S〉 → B. Once we have
proven this, it is clear that from the definition of f̄ that f = f̄ ◦π. Note that f = f̄ ◦π
implies the uniqueness of f̄ since it requires that f̄ ([a]) = f̄ (π(a)) = f (a).

In order to show that f̄ is well-defined, consider a,b ∈ A such that [a] = [b]. By
Proposition 1.1.7, we have a− b ∈ 〈S〉, and thus a− b = ∑aisi for some ai ∈ A and
si ∈ S. It follows that

f (a) = f (b+∑aisi) = f (b)+∑ f (ai) f (si)︸︷︷︸
=0

= f (b),

which shows that the value f̄ ([a]) = f̄ ([b]) does not depend on the choice of repre-
sentative for [a] = [b]. The map f̄ is a ring homomorphism since f̄ ([1]) = f (1) = 1
and

f̄ ([a][+][b]) = f (a+b) = f (a)+ f (b) = f̄ ([a])+ f̄ ([b]),
f̄ ([ab]) = f (ab) = f (a) · f (b) = f̄ ([a]) · f̄ ([b])

for all a,b ∈ A. This concludes the proof of the proposition.

Notation. In the following, we denote the addition and the multiplication of a quotient
ring A/I simply by + and ·, respectively. We sometimes write ā for [a].

Example 1.3.9. (0) If I = {0} is the trivial ideal of a ring A, then the quotient map
π : A→ A/{0} is an isomorphism of rings.

(1) Let I = nZ = 〈n〉 be the principal ideal of Z generated by a positive integer
n ∈ Z. Then Z/nZ=

{
[0], . . . , [n−1]

}
, as explained in Example 1.1.8. Similar to

addition, multiplication is calculated modulo n, i.e.

[a] · [b] = [ab− kn]

where k ∈ N is such that 06 ab− kn < n.

Proposition 1.3.10. Let n> 0. Then Z/nZ is an integral domain if and only if n = 0 or
n = p is prime. If n = p is prime, then Fp = Z/pZ is a field.



1.3. Ideals and quotients 15

Proof. If n = 0, then Z/0Z= Z is an integral domain. If n = 1, then Z/1Z= {0} is not.
If n > 1 is not prime, i.e. n = k · l for some k, l > 1, then k̄ 6= 0̄ 6= l̄ and k̄ · l̄ = 0̄ in Z/nZ,
which shows that Z/nZ is with zero divisors and thus not an integral domain.

If n = p is prime, then 0̄ 6= 1̄ in Fp = Z/pZ. Consider k̄, l̄ ∈ Fp with k̄ · l̄ = 0̄, but
k̄ 6= 0̄. Then in Z, the prime number p does divide k · l, but not k. By the unique prime
factorization of integers, p divides l, i.e. l̄ = 0̄ in Fp. Thus Fp is an integral domain.
Since Fp is finite, it is a field by Exercise 1.6.

Definition 1.3.11. Let A be a ring. The polynomial ring over A is the set

A[T ] =
{

∑
i∈N

aiT i
∣∣∣ai ∈ A, ai = 0 for all but finitely many i ∈ N

}

together with the addition
(
∑
i∈N

aiT i)+
(
∑
i∈N

biT i) = ∑
i∈N

(ai +bi)T i

and the multiplication

(
∑
i∈N

aiT i) ·
(
∑
i∈N

biT i) = ∑
i∈N

(
∑

k+l=i
ak ·bl

)
T i.

A polynomial over A is an element f = ∑i∈N aiT i of A[T ]. Its degree is

deg f = max{i ∈ N |ai 6= 0}

if ai 6= 0 for some i, and deg f = 0 if ai = 0 for all i. If n = deg f , then an is called the
leading coefficient of f and a0 is called the constant coefficient of f . If an = 1, then
f is called monic.

Notation. We sometimes omit the index i from the sum and write ∑aiT i. If ai = 0 for
i > n, then we also write ∑aiT i = anT n + · · ·+ a1T + a0. In particular, we consider
elements a ∈ A as constant polynomials ∑aiT i = a0 = a where ai = 0 for all i > 0. In
particular, the trivial polynomial is 0, i.e. ai = 0 for all i ∈N, and the identity polynomial
is 1, i.e. a0 = 1 and ai = 0 for i > 0. We leave it as Exercise 1.10 to verify that A[T ] is
indeed a ring with zero 0 and one 1.

Proposition 1.3.12. Let K be a field and f = ∑aiT i ∈ K[T ] be a nonzero polynomial of
degree n> 1. Then the map

{n−1

∑
i=0

biT i
∣∣∣bi ∈ K

}
−→ K[T ]/〈 f 〉

g =
n−1

∑
i=0

biT i 7−→ g+ 〈 f 〉

is a bijection.
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Proof. We begin with the injectivity of the map. If g and g′ are polynomials of degree < n
whose classes [g] = [g′] in K[T ]/〈 f 〉 are equal, then g−g′ = f ·h for some polynomial
h = ∑ciT i over K. Assume that h 6= 0, i.e. cm 6= 0 for m = degh. Then

f ·h =
( n

∑
i=0

aiT i
)
·
( m

∑
i=0

ciT i
)

= ancmT n+m + (lower terms),

which is a polynomial of degree n+m > n. But this cannot be since deg(g− g′) 6
max{degg,degg′} < n. We conclude that h must be the trivial polynomial and thus
g = g′, which establishes the injectivity of the map of the proposition.

We turn to the surjectivity of the map. Consider a class [g] = g+〈 f 〉 in K[T ]/〈 f 〉 that
is represented by a polynomial g = ∑biT i ∈ K[T ] of minimal degree, i.e. degg′ > degg
for all g′ ∈ [g]. We need to show that m = degg < n. If this was not the case, i.e. m> n,
then we could define

g′ = g− bm

an
T m−n · f =

(
bm−

bm

an
·an

︸ ︷︷ ︸
=0

)
T m + (terms of degree < m),

which is a polynomial of degree smaller than m = degg in the class [g], a contradiction
to the minimality of degg. This shows that degg < n and concludes the proof of
surjectivity.

Definition 1.3.13. An ideal I of a ring A is

• prime if S = A− I is a multiplicative subset, i.e. 1 ∈ S and ab ∈ S for all a,b ∈ S;

• proper if I 6= A;

• maximal if it is proper and I ⊂ J implies I = J for all proper ideals J of A.

Lemma 1.3.14. Let A be a ring and I and ideal of A.

(1) The ideal I is prime if and only if A/I is an integral domain.

(2) The ideal I is maximal if and only if A/I is a field.

Proof. We begin with (1). By definition I is prime if and only if 1∈ S and for all a,b∈ S
also ab ∈ S. This is equivalent with the condition that 0̄ 6= 1̄ in A/I and āb̄ 6= 0̄ for all
ā, b̄ ∈ A/I−{0̄}, which are precisely the defining properties of an integral domain. Thus
(1).

We turn to (2). Assume that I is maximal. Since I 6= A, we have A/I 6= {0̄} and thus
0̄ 6= 1̄ by Lemma 1.2.2. Consider ā ∈ A/I−{0̄}. Then a /∈ I and 〈I∪{a}〉= A by the
maximality of I. Thus we have 1 = c+ba for some c ∈ I and b ∈ A, by Lemma 1.3.4
and noting that I is closed under addition and multiplication by elements of A. Thus we
have c̄ = 0̄ and 1̄ = c̄+ b̄ā = b̄ā in A/I, which shows that ā has a multiplicative inverse,
which is b̄. This shows that A/I is a field.

Conversely assume that A/I is a field. Since 0̄ 6= 1̄, we conclude that I is a proper
ideal. Consider an ideal J of A such that I ⊂ J. If there is an element a ∈ J− I, then
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ā 6= 0̄ in A/I and thus has a multiplicative inverse b̄, i.e. āb̄ = 1̄ or 1− ab ∈ I. Since
a ∈ J, also ab ∈ J. Therefore 1 = (1− ab)+ ab ∈ J and J = A. This shows that I is
maximal and concludes the proof of the lemma.

Corollary 1.3.15. Every maximal ideal is a prime ideal.

Proof. Let A be a ring and I a maximal ideal of A. Then A/I is a field by Lemma 1.3.14
and thus an integral domain by Lemma 1.2.5. Again by Lemma 1.3.14, we conclude
that I is a prime ideal.

1.4 The isomorphism theorems for rings
Theorem 1.4.1 (First isomorphism theorem). A ring homomorphism f : A→ B induces
an isomorphism of rings

f̄ : A/ker f −→ im f .
ā 7−→ f (a)

Proof. By the definition of ker f as f−1(0), we have f (ker f ) = {0}. Thus by the
universal property of the quotient A/ker f (Proposition 1.3.8), f factors into the quotient
map π : A→A/I composed with a (uniquely defined) ring homomorphism f̂ : A/ker f →
B. Since f = f̂ ◦π, we have necessarily that f̂ (ā) = f (a). By the definition of the subring
im f of B, f̂ restricts to a surjective ring homomorphism f̄ : A/ker f → im f , which is
the map described in the theorem since f̄ (ā) = f̂ (ā) = f (a). The ring homomorphism
f̄ is injective since ker f̄ = π(ker f ) = {0̄}. This shows that f̄ is an isomorphism, as
claimed.

Theorem 1.4.2 (Second isomorphism theorem). Let A be a ring, B a subring and I an
ideal of A. Then the following holds true.

(1) B+ I = {b+ c|b ∈ B,c ∈ I} is a subring of A.

(2) B∩ I is an ideal of B.

(3)
Φ : B/(B∩ I) −→ (B+ I)/I

a+(B∩ I) 7−→ a+ I

is an isomorphism of rings.

Proof. We begin with (1). Since 0,1 ∈ B and 0 ∈ I, both 0 = 0+0 and 1 = 1+0 are
in B+ I. For all b,b′ ∈ B and c,c′ ∈ I, both (b+ c)− (b′− c′) = (b−b′)+(c− c′) and
(b+ c)(b′+ c′) = bb′+(bc′+b′c+ cc′) are elements of B+ I. Thus B+ I is a subring
of A.

We turn to (2). Clearly 0 ∈ B∩ I. Given a ∈ B and b,c ∈ B∩ I, we have that ab and
b+ c are in both B and I. Thus B∩ I is an ideal of B.
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We turn to (3). The map Φ is a ring homomorphism since Φ(1+B∩ I) = 1+ I and
for all a,b ∈ B,

Φ
(
[a]+ [b]

)
= Φ

(
[a+b]

)
= [a+b] = [a]+ [b] = Φ

(
[a]
)
+Φ

(
[b]
)
,

Φ
(
[a] · [b]

)
= Φ

(
[a ·b]

)
= [a ·b] = [a] · [b] = Φ

(
[a]
)
·Φ
(
[b]
)
.

where [a] stands for a+B∩ I where it appears as an argument of Φ and for a+ I
otherwise.

We turn to the injectivity of Φ. An element a ∈ B is in kerΦ if and only if Φ([a]) =
[0] = I, i.e. a ∈ I. Since a ∈ B, this is equivalent with a being an element of B∩ I, i.e.
a+B∩ I = [0]. Thus kerΦ = {[0]}, which shows injectivity.

To verify the surjectivity of Φ, consider an element b+c∈ B+ I with b∈ B and c∈ I.
Then [b+ c] = [b+ c− c] = [b] as classes of B+ I/I, and thus [b+ c] = [b] = Φ([b]) is
in the image of Φ. This completes the proof of the theorem.

Theorem 1.4.3 (Third isomorphism theorem). Let A be a ring, I an ideal of A and
π : A→ A/I the quotient map. Then

Φ :
{

ideals of A containing I
}
−→

{
ideals of A/I

}

J 7−→ J/I = π(J)

is an inclusion preserving bijection, and

f : A/J −→ (A/I)/(J/I)
a+ J 7−→ ([a]+ J)/I

is a ring isomorphism for every ideal J of A containing I.

Proof. We begin with showing that Φ(J) = J/I is indeed an ideal of A/I where J is an
ideal of A that contains I. Clearly [0] ∈ J/I. Consider a ∈ A such that [a] ∈ J/I, i.e. there
are b ∈ J and c ∈ I such that a = b+ c. Since I ⊂ J, we conclude that a = b+ c ∈ J.
Thus J = π−1(J/I), which implies for a,b,c ∈ A with [b], [c] ∈ J that both [a] · [b] = [ab]
and [b] + [c] = [b+ c] are in J/I. This shows that J/I is an ideal and thus that Φ is
well-defined. Moreover, the fact that J = π−1(J/I) implies at once that Φ is injective.

By Exercise 1.13, the inverse image π−1(J) of an ideal J of A/I is an ideal of A.
Note that π−1(J) contains I. Since π is surjective, we have J = π

(
π−1(J)

)
, which shows

that Φ is surjective. It is clear that Φ is inclusion preserving, which concludes the proof
of the first claim of the theorem.

The association a 7→ [a] + J/I defines a surjective ring homomorphism g : A→
(A/I)/(J/I) with kernel I + J = J. By Theorem 1.4.1, it induces an isomorphism
ḡ : A/J → (A/I)/(J/I), which maps a+ J to g(a) = ([a] + J)/I. Thus f = ḡ is an
isomorphism, as claimed.

1.5 The Chinese remainder theorem
Definition 1.5.1. Let {Ai}i∈I be a family of rings. The product of {Ai}i∈I is the
Cartesian product

∏
i∈I

Ai =
{
(ai)i∈I

∣∣ai ∈ Ai
}
,
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together with componentwise addition (ai)+(bi) = (ai +bi) and componentwise multi-
plication (ai) · (bi) = (aibi).

Proposition 1.5.2 (Universal property for product rings). Let {Ai}i∈I be a family of
rings. Then the following holds.

(1) The product ∏i∈I Ai is a ring whose zero is the element (ai) with ai = 0 for all
i ∈ I and whose one is the element (ai) with ai = 1 for all i ∈ I.

(2) The canonical projections

π j : ∏i∈I Ai −→ A j
(ai)i∈I 7−→ a j

are ring homomorphisms.

(3) The product ∏Ai together with the canonical projections {π j} j∈I satisfies the fol-
lowing universal property: for every ring B and for every family of ring homomor-
phisms { f j : B→ A j} j∈I , there exists a unique ring homomorphism F : B→∏Ai
such that f j = π j ◦F for all j ∈ I, i.e. the diagram

B ∏Ai

A j

F

f j
π j

�

commutes for every j ∈ I.

Proof. The verification of (1) and (2) is straight-forward, and we leave this as an exercise
to the reader.

We turn to (3). Given ring homomorphisms f j : B→ A j, we define F : B→∏Ai
by F(a) = ( fi(a))i∈I . Assuming that F is a ring homomorphism, we see that f j(a) =
π j
(
( fi(a))i∈I

)
= π j ◦F(a), as desired. The requirement f j = π j ◦F also shows that if

(bi)i∈I = F(a), then b j = π j
(
F(a)

)
= f j(a), which shows that F is unique.

We continue with showing that F : B→ ∏Ai is a ring homomorphism. By (1),
F(1) = ( fi(1))i∈I = (1)i∈I is the one of ∏Ai. Given a,b ∈ B, we have

F(a+b) =
(

fi(a+b)
)

i∈I =
(

fi(a)
)

i∈I +
(

fi(b)
)

i∈I = F(a)+F(b),

F(ab) =
(

fi(ab)
)

i∈I =
(

fi(a)
)

i∈I ·
(

fi(b)
)

i∈I = F(a) ·F(b),

which shows that F is a ring homomorphism and concludes the proof.

Definition 1.5.3. Let A be a ring and I1, . . . , In ideals of A. The product of I1, . . . , In is
the ideal

n

∏
i=1

Ii = I1 · · · In =
〈
{a1 · · ·an |ai ∈ Ii}

〉
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of A. The sum of I1, . . . , In is the ideal
n

∑
i=1

Ii = I1 + · · ·+ In = {a1 + · · ·+an |ai ∈ Ii}

of A. The ideals I1, . . . , In are pairwise coprime if Ii and I j are coprime, i.e. Ii + I j = A,
for all i 6= j.

Definition 1.5.4. It is left as Exercise 1.13 to verify that ∑ Ii is indeed an ideal of A.

Theorem 1.5.5 (Chinese remainder theorem). Let A be a ring, I1, . . . , In pairwise co-
prime ideals of A and I =

⋂n
i=1 Ii. Then the association

f : A/I −→ ∏n
i=1(A/Ii)

a+ I 7−→ (a+ I1, . . . ,a+ In)

is a well-defined isomorphism of rings.

Proof. We begin with the proof that f is a well-defined and injective ring homomorphism.
By Proposition 1.5.2, the quotient maps fi : A→ A/Ii, mapping a to a+ Ii, induce a
ring homomorphism F : A→ ∏A/Ii such that f j = π j ◦F for all i = 1, . . . ,n where
π j : ∏A/Ii→ A/I j is the j-th canonical projection. Thus the kernel of F is

kerF = {a ∈ A |F(a) = 0}
= {a ∈ A | f j(a) = π j ◦F(a) = 0 for all j = 1, . . . ,n}

=
n⋂

i=1

ker f j =
n⋂

i=1

Ii = I.

By the universal property of the quotient (Proposition 1.3.12), F factors into the quotient
map π : A→ A/I followed by a uniquely determined ring homomorphism f : A/I→
∏A/Ii. This is indeed the map of the theorem since we have f (a + I) = F(a) =
(a+ I1, . . . ,a+ In). Since ker f = π(I) = {0̄}, the ring homomorphism f : A/I→∏A/Ii
is injective.

We turn to the surjectivity of f . Since the ideals I1, . . . , In are pairwise coprime, we
find for every j 6= i elements ai, j ∈ Ii and a j,i ∈ I j such that ai, j +a j,i = 1. We define
ai = ∏ j 6=i a j,i where j varies through {1, . . . ,n}−{i}. By definition, ai ∈∏ j 6=i I j, and
by Exercise 1.13, we know that ∏ j 6=i I j ⊂ I j′ for all j′ 6= i. Thus ai+ I j = 0+ I j for j 6= i.
On the other hand, we have ∏ j 6=i(ai, j +a j,i) = 1 and thus

ai = 1−
(
∏
j 6=i

(ai, j +a j,i)−∏
j 6=i

a j,i

︸ ︷︷ ︸
∈Ii

)
,

which shows that ai ∈ 1+ Ii. Thus the inverse image of an element (bi + Ii) ∈∏A/Ii
under f is ∑n

j=1 a jb j + I ∈ A/I, as can be computed directly:

f
( n

∑
j=1

a jb j + I
)

=
( n

∑
j=1

a jb j + Ii

)
i=1,...,n

= (bi + Ii)i=1,...,n,
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using that a j + Ii = δi, j + Ii where the Kronecker symbol δi, j is 1 for i = j and 0 for i 6= j.
This concludes the proof of surjectivity.

Corollary 1.5.6. Let e1, . . . ,en > 1 be pairwise coprime integers, i.e. 〈ei,ei〉 = Z for
all i 6= j. Then there is an a ∈ Z such that a ≡ ai (mod ei), i.e. a− ai ∈ 〈ei〉, for all
i = 1, . . . ,n.

Proof. By the Chinese remainder theorem (Theorem 1.5.5), the ring homomorphism

f : Z −→ ∏n
i=1(Z/eiZ)

a 7−→ a+ eiZ

is surjective. Thus there exists an a∈Z such that a+eiZ= ai+eiZ, i.e. a≡ ai (mod ei),
for all i = 1, . . . ,n.

1.6 Euclidean domains and principal ideal domains
Definition 1.6.1. Let A be a ring and a,b ∈ A. A divisor of a is an element d ∈ A such
that a = cd for some c ∈ A. We write d|a if d is a divisor of a. A common divisor of a
and b is an element d ∈ A such that d|a and d|b. A greatest common divisor of a and
b is a common divisor d of a and b such that every other common divisor d′ of a and
b is a divisor of d. We define gcd(a,b) as the ideal of A that generated by all greatest
common divisors of a and b.

Remark. Note that every element d ∈ A is a divisor of 0. In contrast, a zero divisor is
an element d ∈ A such that cd = 0 for some c ∈ A with c 6= 0. Thus 0 is always a zero
divisor, which we call the trivial zero divisor. But it might be that there are no other
zero divisors in A, which is the case if and only if A is a ring is without zero divisors,
according to Definition 1.2.4.

Remark. In general, the greatest common divisor of two elements a and b does not
have to exist. For example, the elements 6 and 2+ 2

√
−5 of Z[

√
−5] do not have a

greatest common divisor. For more details, see Exercise 1.26.

Lemma 1.6.2. Let A be a ring and a,b,c,d ∈ A. Then the following hold true.

(1) If d|a and d|b, then d|a+b and d|ca. If d|a and a|b, then d|b.

(2) The following are equivalent:

(a) d|a;
(b) a ∈ 〈d〉;
(c) 〈a〉 ⊂ 〈d〉.

(3) The ideal gcd(a,b) is principal and equal to 〈d〉 if d is a greatest common divisor
of a and b.
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Proof. We begin with (1). If d|a and d|b, then a = da′ and b = db′ for some a′,b′ ∈ A.
Thus a+b = d(a′+b′) and ca = dca′, i.e. d|a+b and d|ca, as claimed.

We continue with (2). Assume (2a), i.e. d|a. Thus a = da′ for some a′ ∈ A, which
shows that a ∈ 〈d〉, as claimed in (2b). Assume (2b), i.e. a ∈ 〈d〉. Then a = cd for some
c ∈ A and thus ba = bcd ∈ 〈d〉 for all b ∈ A. This shows that 〈a〉= {ba|b ∈ A} ⊂ 〈d〉, as
claimed in (2c). Assume (2c), i.e. 〈a〉 ⊂ 〈d〉. Then a ∈ 〈d〉, i.e. a = cd for some c ∈ A.
Thus d|a, as claimed in (2a). This concludes the proof of (2).

We continue with (3). If a and b have no greatest common divisor, then, by definition,
gcd(a,b) = 〈∅〉= 〈0〉 is principal. If the set S of greatest common divisors of a and b
is not empty and d,d′ ∈ S, then d|d′ by the definition of a greatest common divisor of a
and b. Thus d′ = dc for some c ∈ A. This shows that S⊂ 〈d〉 ⊂ 〈S〉= gcd(a,b), which
implies that gcd(a,b) = 〈d〉. This verifies all claims of (3) and concludes the proof of
the lemma.

Definition 1.6.3. A Euclidean domain is an integral domain A for which there exists a
Euclidean function, which is a function N : A→ N such that for all a,b ∈ A with b 6= 0,
there are q,r ∈ A such that a = bq+ r and N(r)< N(b) or r = 0.

Example 1.6.4. We list some examples of Euclidean domains.

(1) Every field K is a Euclidean domain with respect to any function N : K→N since
for every a,b ∈ K with b 6= 0, we have a = qb+ r for q = ab−1 and r = 0.

(2) The ring of integers Z is an Euclidean domain with respect to the usual absolute
value N(a) = |a|. Indeed, given a,b ∈ Z with b 6= 0, we define q as the closest
integer to the rational number a/b and r = a−qb. Then we have |a/b−q| < 1
and therefore the desired inequality

|r| = |a−qb| = |a/b−q| · |b| < 1 · |b| = |b|.

(3) The ring Z[i] of Gaussian integers is a Euclidean domain with respect to the
function

N : Z[i] −→ N,
a+ ib 7−→ a2 +b2

as can be seen as follows. First note that if we consider a+ ib as an element of
the complex plane C = R×R, then N(a+ ib) = a2 + b2 is equal to the square
|a+ ib|2 of the distance of a+ ib to 0.

Given x = a+ ib and y = c+ id 6= 0, we can consider x/y as a point in the complex
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plane. This point is of distance of at most
√

1/2 from a point q = n+ im ∈ Z[i]:

q q+1q−1

q+ i

q− i

√
1/2

x/y

If we define r = x−qy, then

N(r) = |x−qy|2 = |x/y−q|2 · |y|2 6 1
2 · |y|2 < |y|2 = N(y)

verifies that N is a Euclidean function.

(4) Let K be a field. Then the polynomial ring K[T ] is a Euclidean domain with respect
to the degree map deg : K[T ]→ N. Indeed, given two polynomials f ,g ∈ K[T ]
with degg> 1, we know by Proposition 1.3.12 that there is a polynomial r ∈K[T ]
of degree smaller than g such that r+ 〈g〉 = f + 〈g〉 as classes of K[T ]/〈g〉. In
other words, f − r ∈ 〈g〉 or f − r = qg for some polynomial q ∈ K[T ]. Thus we
have f = qg+ r with degr < degg, as desired. If degg = 0, but g 6= 0, then
g = a0 is invertible and thus f = qg+0 for q = a−1

0 f .

Theorem 1.6.5 (Euclidean algorithm). Let A be a Euclidean domain with Euclidean
function N : A→ N and a,b ∈ A with b 6= 0. Then there is a sequence of elements
r0, . . . ,rn ∈ A and q2, . . . ,qn+1 ∈ A, starting with r0 = a and r1 = b, such that

r0 = q2r1 + r2 and N(r2) < N(r1),

r1 = q3r2 + r3 and N(r3) < N(r2),

...
...

rn−2 = qnrn−1 + rn and N(rn) < N(rn−1),

rn−1 = qn+1rn.

Given such a sequence, all the elements r1, . . . ,rn are nonzero and d = rn is a greatest
common divisor of a and b. Moreover d = ca+ eb for some c,e ∈ A, which means that
gcd(a,b) = 〈d〉= 〈a,b〉.

Proof. The defining property of an Euclidean domain lets us find the required elements
recursively: for every pair of elements ri−2 and ri−1 6= 0 of A, there are qi and ri in
A such that ri−2 = qiri−1 + ri and N(ri) < N(ri−1) or ri = 0. If ri = 0, then we stop
the recursion and find n = i− 1, which happens after at most N(r1)+ 1 steps. This
establishes the first assertion of the theorem.

We show the latter assertions by induction on n. We begin with the claim that
r1, . . . ,rn are nonzero. If n = 1, then this follows from the assumption that r1 = b 6= 0.
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If n = 2, then q3r2 = r1 6= 0 implies that r2 6= 0. For n > 2, let us assume that r2 = 0.
Then r3 = r1−q3r2 = r1, which contradicts the assumption that N(r3)< N(r2)< N(r1).
Thus we conclude that r2 6= 0. Therefore we can apply the inductive hypothesis to the
sequences with r′i = ri+1 and q′i = qi+1, for which r′n−1 = 0, to conclude that ri+1 = r′i 6= 0
for all i = 1, . . . ,n−1, which finishes the induction.

We continue with showing that d is a common divisor of a and b. If n = 1, then
d = b and a = q2b, thus d divides both a and b. If n > 1, then can apply the inductive
hypothesis to the sequences with r′i = ri+1 and q′i = qi+1 to conclude that d divides both
a′ = r′0 = r1 = b and b′ = r′1 = r2. Therefore d also divides q2r1 + r2 = r0 = a, which
finishes the induction.

We continue with showing that every common divisor d′ of a and b divides d. If
n = 1, then d = b, and we have d′|b = d by assumption. If n > 1, then d′ divides b = r1
and q2a+ b = r2. Thus we can apply the inductive hypothesis to the sequences with
r′i = ri+1 and q′i = qi+1 to conclude that d′ divides d, which finishes the induction.

We continue with showing that d = ca + eb for some c,e ∈ A. If n = 1, then
d = r2 = r0−q2r1 = 1 ·a+(−q2)b, as desired. If n > 1, then we can apply the inductive
hypothesis to the sequences with r′i = ri+1 and q′i = qi+1 to conclude that

d = c′r′0 + e′r′1 = c′r1 + e′(r0−q2r1) = ca+ eb

for c = e′ and e = c′−q2e′, which finishes the induction.
To conclude the proof, we observe that gcd(a,b) = 〈d〉 by Lemma 1.6.2 (3), that

a,b ∈ 〈d〉 since d|a and d|b, and thus 〈a,b〉 ⊂ 〈d〉, and that 〈d〉 ⊂ 〈a,b〉 since d =
ca+ eb.

Definition 1.6.6. A principal ideal domain (often just PID) is an integral domain A
for which every ideal is a principal ideal.

Proposition 1.6.7. Every Euclidean domain is a principal ideal domain.

Proof. Let A be a Euclidean domain with Euclidean function N : A→ N and I an ideal
of A. Since the trivial ideal {0}= 〈0〉 is always principal, we can assume that I is not
trivial. Let b ∈ I be a nonzero element with minimal value N(b), i.e. N(b)6 N(b′) for
all b′ ∈ I−{0}. Given a ∈ I, there are q,r ∈ A such that a = qb+ r and N(r)< N(b) or
r = 0. Since r = a−qb ∈ I, the minimality of N(b) implies that r = 0. Thus a = qb is
an element of 〈b〉, which shows that I = 〈b〉 is principal.

Remark. Two examples of principal ideal domains that are not Euclidean domains are

R[x,y]/〈x2 + y2 +1〉 and Z[T ]/〈T 2−T +5〉.
It requires in both cases some effort to prove this, which we will not do here. In general,
there seem to be no easy examples of such rings.

Lemma 1.6.8. Let A be a principal ideal domain and a,b,d ∈ A. Then d is a greatest
common divisor of a and b if and only if 〈a,b〉 = 〈d〉. In particular, every pair of
elements of A has a greatest common divisor.

Proof. The proof is left as Exercise 1.18.
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1.7 Unique factorization domains
One of the basic theorems in number theory is the unique factorization of a positive
integer into prime factors. Let us consider this statement in some more detail. A prime
number is a positive integer p different from 1 whose only positive integer divisors are
1 and p. In the following, we use the convention that the empty product is defined as 1.

Theorem 1.7.1 (Fundamental Theorem of Arithmetic). Every positive integer n has a
factorization n = p1 · · · pn into uniquely determined prime numbers p1, . . . , pn, up to a
permutation of indices.

This theorem was first stated and proven by Euclid around 300 BC in his influential
work “The elements”. The most difficult part of the proof is the uniqueness claim, which
follows from what is called today Euclid’s Lemma.

Theorem 1.7.2 (Euclid’s Lemma). If a prime number p divides the product ab of two
positive integers a and b, then p must divide at least one of a and b.

The original proof of Euclid is elementary, but technically quite involved. This
elementary method of proof was simplified later using on Bézout’s Lemma. As a
motivation for this section, the reader is encouraged to reflect about these results and to
think about a proof.

In this section, we generalize the factorization of a positive integer into prime num-
bers from the (positive) integers to arbitrary rings. There are two types of generalizations
of prime numbers, one that captures the defining property of a prime number, the other
capturing the property exhibited by Euclid’s Lemma.

The core of this section is a characterization of the validity unique factorization in
an integral domain in several equivalent ways. From this, we deduce a proof of the
Fundamental Theorem of Arithmetic and Euclid’s Lemma.

Definition 1.7.3. Let A be a ring. An element a ∈ A is

• irreducible if a 6= 0, if a /∈ A× and if a = bc for some b,c ∈ A implies that b ∈ A×

or c ∈ A×;

• prime if a 6= 0, if a /∈ A× and if a|bc for some b,c ∈ A implies that a|b or a|c.

Example 1.7.4. We examine some examples of irreducible and prime elements.

(1) A prime number is the same thing as an positive integer that is irreducible in the
sense of Definition 1.7.3. Indeed, a prime number p is apparently not zero and
not a unit. Given an equality p = cd with d > 0, we have d|p and thus either
d = 1 ∈ Z× or d = p, which implies that c = 1 ∈ Z×. If d < 0, then we can use
the same argument for −d and −c in place of d and c, respectively. Conversely,
assume that p ∈ Z is a positive and irreducible integer. Then clearly p > 1. Given
d|p for some d > 0, i.e. p = cd for some c ∈ Z, we conclude that d ∈ Z× or
c ∈ Z×. Since Z× = {±1}, we have d = 1 in the former case and d = p in the
latter case.
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By Euclid’s Lemma, a prime number is also a prime element in the sense of
Definition 1.7.3. A proof of this is more difficult, and we postpone it to the end of
this section; cf. Corollary 1.7.16.

(2) Let A be ring and a ∈ A. Then f = T −a is irreducible in A[T ]. Indeed, assume
that f = gh for two polynomials g,h ∈ A[T ]. Then degg+degh = deg f = 1,
which means that one of g and h is a linear polynomial and the other is a constant.
By the symmetry of g and h, we assume that g = bT − c and h = d. Then
f = gh = bdT − cd, and thus bd = 1, which shows that h = d is a unit. Thus f is
irreducible, as claimed.

If A[T ] is a unique factorization domain, then f = T −a is also prime, and this is
the case if A itself is a unique factorization domain, which we will only prove in
Theorem 1.11.9. At the end of this section, we will prove this fact in the case that
A = K is a field, cf. Proposition 1.6.7 and Corollary 1.7.15).

(3) The element (1,0)∈R×R is not irreducible since (1,0) = (1,0) ·(1,0), but (1,0)
is not a unit. It is prime since if (1,0)|(a,b) · (c,d), then either b = 0 or d = 0 and
thus (1,0)|(a,b) or (1,0)|(c,d).

(4) Let Z[
√
−5] be the subring of C that consists of all complex numbers of the form

a+b
√
−5 with a,b ∈ Z. The element 2 ∈ Z[−

√
−5] is irreducible, but not prime.

The proof is left as Exercise 1.26.

Lemma 1.7.5. Let A be a ring. Then the following hold true.

(1) An element a ∈ A is prime if and only if 〈a〉 is a nontrivial prime ideal.

(2) If a prime element a ∈ A divides a product b1 · · ·bn, then a divides bi for some
i ∈ {1, . . . ,n}.

(3) If A is an integral domain, then every prime element of A is irreducible.

Proof. We begin with the proof of (1). Assume that a ∈ A is prime, i.e. a|bc implies a|b
or a|c. By Lemma 1.6.2, this is means, equivalently, that bc ∈ 〈a〉 implies b ∈ 〈a〉 or
c ∈ 〈a〉. Thus S = A−〈a〉 is closed under multiplication. Since a /∈ A×, 〈a〉 is a proper
ideal and thus 1 ∈ S, which shows that 〈a〉 is a prime ideal. Since a 6= 0, this prime ideal
is not trivial.

Assume conversely that 〈a〉 is a nontrivial prime ideal. Then a 6= 0 since 〈a〉 is
nontrivial and a /∈ A× since 〈a〉 is a proper ideal. Since S = A−〈a〉 is closed under
multiplication, we conclude that a|bc implies a|b or a|c, which shows that a is prime.
This concludes the proof of (1).

We continue with (2), which can be proven by induction on the number of factors
n. Note that necessarily n > 1 since a prime element a cannot divide 1. The claim is
trivial for n = 1. For n > 1, we have that a|b1 . . .bn implies that a|b1 . . .bn−1 or a|bn. In
the former case, a|bi for some i ∈ {1, . . . ,n−1} by the inductive hypothesis. Thus the
claim.

We continue with (3) and assume that A is an integral domain. Let a be a prime
element. Then a 6= 0 and a /∈ A×. Consider a = bc for some b,c ∈ A. Then a|bc and
thus a|b or a|c, by the definition of a prime element. By symmetry of the argument in b
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and c, we can assume that a|c, i.e. c = da for some d ∈ A. Then we have a = bc = bda,
i.e. ma(1) = 1 ·a = bd ·a = ma(bd). Since A is an integral domain, the multiplication by
a is injective and thus bd = 1, which shows that b ∈ A×. This shows that a is irreducible,
as claimed, and concludes the proof of the lemma.

Definition 1.7.6. Let A be a ring. Two elements a,b ∈ A are associated if there is an
u ∈ A× such that a = ub. We write a∼ b if a and b are associated.

Lemma 1.7.7. Let A be a ring. The relation ∼ is an equivalence relation on A. If a∼ b,
then a is irreducible if and only if b is irreducible, and a is prime if and only if b is
prime.

Proof. We begin with the verification that ∼ is an equivalence relation. Since a = 1 ·a,
we have a∼ a, which shows that ∼ is reflexive. If a∼ b, i.e. a = ub for some u ∈ A×,
then b = u−1a and thus b∼ a, which shows that ∼ is symmetric. If a∼ b and b∼ c, i.e.
a = ub and b = vc for some u,v ∈ A×, then uv ∈ A× and a = ub = (uv)c. Thus a ∼ c,
which shows that ∼ is transitive. This shows that ∼ is an equivalence relation.

Let a∼ b, i.e. a = ub for some u ∈ A×. Assume that a is irreducible. Since a 6= 0,
we have b 6= 0, and since a /∈ A×, we have b /∈ A×. Consider an equality b = cd with
c,d ∈ A. Then a = ub = (uc)d. Since a is irreducible, either (uc) ∈ A× or d ∈ A×. Note
that if uc ∈ A×, then also c = u−1uc ∈ A×. This concludes the proof that b is irreducible.
The inverse implication follows by the symmetry of the argument in a and b.

Assume that a is prime. As before, this implies that b 6= 0 and b /∈ A×. Consider
a relation b|cd, i.e. cd = eb for some e ∈ A. Then ucd = ea, i.e. a|(uc)d. Since a is
prime, we have a|uc or a|d, i.e. uc = e′a or d = e′′a for some e′,e′′ ∈ A. If uc = e′a, then
c = e′b and thus b|c. If d = e′′a, then d = u−1e′′b and thus b|d. This shows that b is
prime. The inverse implication follows by the symmetry of the argument in a and b.

Remark. Note that a ∼ b implies that 〈a〉 = 〈b〉. If A is an integral domain, then the
converse is also true: if 〈a〉= 〈b〉, then a∼ b. The proof is left as Exercise 1.16.

Definition 1.7.8. Let A be a ring and a ∈ A. A factorization of a (into irreducible
elements) is an equation a = u∏n

i=1 fi where u ∈ A× and f1, . . . , fn are irreducible. A
factorization into primes is a factorization a = u∏n

i=1 fi for which f1, . . . , fn are prime
(and irreducible). A factorization a = u∏n

i=1 fi is unique (up to associates) if for every
other factorization a = v∏m

i=1 gi, there is a bijection σ : {1, . . . ,n} → {1, . . . ,m} such
that fi ∼ gσ(i) for all i = 1, . . . ,n.

Lemma 1.7.9. Let A be an integral domain and a,b ∈ A−{0}. A factorization of a into
primes is unique. The product ab has a factorization into primes if and only if both a
and b have factorizations into primes.

Proof. We begin with the uniqueness of a factorization into primes. Consider a factor-
ization a = u∏n

i=1 fi into primes fi and a factorization a = v∏m
i=1 gi (into irreducible gi).

We prove by induction on n that fi ∼ gσ(i) for some bijection σ : {1, . . . ,n}→ {1, . . . ,m}.
If n = 0, then a = u = v∏gi is a unit and therefore ∏gi = uv−1 ∈ A×, which is only
possible if m = 0 and a = v. This establishes the case n = 0.
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If n > 0, then fn divides u∏ fi = a = v∏gi. Since fn is prime, Lemma 1.7.5 implies
that fn divides gk for some k, i.e. gk = un fn for some un ∈ A. Since gk is irreducible
and fn /∈ A×, we conclude that un ∈ A×. This shows that fn ∼ gk. Since A is an
integral domain, we can cancel the term fn from the equation u∏n

i=1 fi = vun fn ∏i 6=k gi,
which yields u∏n−1

i=1 fi = (vun)∏i6=k gi. By the inductive hypothesis there is a bijection
σ′ : {1, . . . ,n−1} → {1, . . . ,m}−{k} such that fi ∼ gσ(i) for i ∈ {1, . . . ,n−1}. If we
extend σ′ to σ : {1, . . . ,n}→ {1, . . . ,m} with σ(n) = k, then the induction claim follows
for n.

We turn to the second claim of the lemma. It is clear that if a and b have factorizations
into primes, then the product of the factorizations is a factorization of ab into primes.
For the converse implication, we consider a factorization ab = u∏n

i=1 fi into primes. We
prove the claim by induction on n. If n = 0, then ab = u ∈ A×, i.e. a and b are units and
have the tautological factorizations a = a and b = b into (an empty product of) primes.

If n> 0, then the prime element fn divides ab, and thus fn|a or fn|b. By the symmetry
of the argument in a and b, we can assume that fn|a, i.e. a = a′ fn for some a′ ∈ A. Since
A is an integral domain, we can cancel the term fn in the equation a′ fnb = u∏n

i=1 fi and
obtain a′b = u∏n−1

i=1 fi. By the inductive hypothesis, we have factorizations a′ = u′∏ f ′i
and b = u′′∏ f ′′i into primes. Thus also a = a′ fn = u′ fn ∏ f ′i is a factorization into
primes, which concludes the proof.

Definition 1.7.10. A ring A satisfies the ascending chain condition for principal
ideals (for short, ACCP) if every sequence

〈a1〉 ⊂ 〈a2〉 ⊂ 〈a3〉 ⊂ · · ·

of inclusions of principal ideals becomes stationary, i.e. that there exists an N > 1 such
that 〈ai〉= 〈ai+1〉 for all i> N.

Remark. By Lemma 1.6.2, the property ACCP can be reformulated as follows: for
every sequence of elements a1,a2, . . . ∈ A such that ai+1|ai for all i > 0, there is an
N > 1 such that ai|ai+1 for all i> N. If A is an integral domain, then ai+1|ai and ai|ai+1
implies ai ∼ ai+1; cf. Exercise 1.16.

Lemma 1.7.11. Let A be an integral domain that satisfies ACCP. Then every nonzero
element of A has a factorization.

Proof. Define S =
{
〈a〉
∣∣a ∈ A−{0} does not have a factorization

}
. Note that if a∼ b,

then a has a factorization if and only if b does. Thus if S is empty, then every nonzero
element of A has a factorization, which is what we intend to prove.

Let us assume, by contradiction, that S is nonempty. Then S must contain a maximal
element since otherwise we could chose for every ideal 〈ai〉 ∈ S a larger ideal 〈ai+1〉,
which defines an infinite properly growing sequence 〈a1〉 ( 〈a2〉 ( · · · . But such a
sequence cannot exist since A satisfies ACCP. This shows that S contains a maximal
element 〈a〉, i.e. if 〈a〉( 〈b〉, then b has a factorization.

Since every irreducible element f has a factorization, namely f = f , the element a
is not irreducible. Thus there exist nonunits b,c ∈ A such that a = bc. In other words,
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〈a〉 ( 〈b〉 and 〈a〉 ( 〈c〉. Thus 〈b〉 and 〈c〉 are not in S, i.e. b and c have respective
factorizations b = u∏ fi and c = v∏gi. But then a = bc = ∏ fi ·∏gi is a factorization
of a, which contradicts our assumption that 〈a〉 ∈ S. This shows that S is empty and that
every nonzero element of A has a factorization, as claimed.

Without additional assumptions, the inverse implication does not hold, i.e. there are
integral domains for which every nonzero element has a factorization, but which fail to
satisfy ACCP. This gap is closed, however, for the following class of rings, which ties
together several concepts that we have introduced in the last sections.

Definition 1.7.12. A unique factorization domain (for short, UFD) is an integral
domain for which every nonzero element has a unique factorization.

Theorem 1.7.13. Let A be an integral domain. Then the following are equivalent.

(1) A is a unique factorization domain.

(2) Every nonzero element of A has a factorization into primes.

(3) Every nonzero prime ideal contains a prime element.

(4) A satisfies ACCP, and every irreducible element of A is prime.

(5) A satisfies ACCP, and every pair of elements of A has a greatest common divisor.

(6) A satisfies ACCP, and for all a,b ∈ A and all factorizations a = u∏n
i=1 fi and

b = v∏m
i=1 gi, we have a|b if and only if there is an injection σ : {1, . . . ,n} →

{1, . . . ,m} such that fi ∼ gσ(i) for all i = 1, . . . ,n.

Proof. We show the equivalence of the assertions of the theorem by first establishing
the circle of implications (1)⇒(6)⇒(5)⇒(4)⇒(1) and then establishing the circle of
implications (2)⇒(1)⇒(3)⇒(2):

(4) (3)

(5) (1)

(6) (2)

We begin with (1)⇒(6). Assume that A is a unique factorization domain. In order to
verify ACCP, we consider an increasing sequence 〈a1〉 ⊂ 〈a2〉 ⊂ · · · of principal ideals
in A. We first observe that if all ai are zero, then ACCP is satisfied. Otherwise there
is a smallest i such that ai 6= 0. Then 〈a1〉 ⊂ 〈a2〉 ⊂ · · · satisfies ACCP if and only if
〈ai〉 ⊂ 〈ai+1〉 ⊂ · · · satisfies ACCP. Thus we can assume without loss of generality that
a1 6= 0.

Let a1 = u∏n
i=1 fi be a factorization. We prove ACCP by induction on n. If n = 0,

then 〈a1〉= A, and thus 〈ai〉= A for all i> 1, which establishes ACCP for n = 0.
If n > 1, then ACCP is clear if 〈a1〉 = 〈ai〉 for all i > 1. If 〈a1〉 ( 〈ai〉 for some

i > 1, then we have a1 = cai for some c ∈ A such that c is neither zero, since a1 6= 0,
nor a unit, since 〈a1〉 6= 〈ai〉. Thus a factorization c = v∏m

i=1 gi has m > 0 irreducible
factors. By the uniqueness of factorizations, this means that every factorization of ai
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has n−m < n factors. Thus the sequence 〈ai〉 ⊂ 〈ai+1〉 ⊂ · · · satisfies ACCP by the
inductive hypothesis, which implies ACCP for 〈a1〉 ⊂ 〈a2〉 ⊂ · · · , as desired.

In order to prove the characterization of divisibility in (6), we consider a,b ∈ A
with respective factorizations a = u∏n

i=1 fi and b = v∏m
i=1 gi. If there is an injection

σ : {1, . . . ,n}→ {1, . . . ,m} such that fi ∼ gσ(i), i.e. gσ(i) = wi fi for some wi ∈ A×, then

b = v
m

∏
i=1

gi = vu−1u
n

∏
i=1

(wi fi) ∏
i/∈im(σ)

gi =
(

vu−1
n

∏
i=1

wi ∏
i/∈im(σ)

gi

)
·a,

which shows that a|b.
Conversely, assume that a|b, i.e. b = ca for some c ∈ A. Let c = w∏l

i=1 hi be
a factorization of c. Then we obtain a factorization b = ca = (uw)∏hi ∏ fi of b.
The uniqueness of the factorization in A implies that fi ∼ gσ(i) for some injection
σ : {1, . . . ,n}→ {1, . . . ,m}. This completes the proof of (1)⇒(6).

We turn to (6)⇒(5). By assumption, A satisfies ACCP, and by Lemma 1.7.11, every
element has a factorization. For establishing the existence of a greatest common divisor,
we investigate the notion of divisibility, under the conditions of (6), in more detail. To
begin with, we consider n> 0, an irreducible element f ∈ A and an arbitrary nonzero
element b ∈ A with factorization b = v∏m

i=1 gi. By (6), f n|b if and only if there is an
injection σ : {1, . . . ,n}→ {1, . . . ,m} such that f ∼ gσ(i) for all i = 1, . . . ,n. This shows
that the largest n such that f n divides b is n = #

{
i ∈ {1, . . . ,m}

∣∣gi ∼ f
}

.
For an irreducible element f ∈ A and b ∈ A−{0}, we define ord f (b) = max

{
n>

0
∣∣ f n|b

}
and conclude that f n divides b if and only if n6 ord〈 f 〉(b).

If f ∼ g, then we have f n|b if and only if gn|b. This leads to a characterization
of divisibility of b by an arbitrary nonzero element a with factorization a = u∏n

i=1 fi.
Namely, the injection σ : {1, . . . ,n} → {1, . . . ,m} in the characterization of a|b in (6)
restricts to injections

σ f :
{

i ∈ {1, . . . ,n}
∣∣ fi ∼ f

}
−→

{
i ∈ {1, . . . ,m}

∣∣gi ∼ f
}

for every irreducible element f ∈ A. This shows for nonzero a and b that a|b if and only
if ord f (a)6 ord f (b) for all irreducible f ∈ A.

We conclude that given two nonzero elements a,b∈A, an element d ∈A is a common
divisor of a and b if and only if ord f (d)6 ord f (a) and ord f (d)6 ord f (b) for all irre-
ducible f ∈A, and d is a greatest common divisor if ord f (d) =min

{
ord f (a),ord f (b)

}

for all irreducible f ∈ A. Such an element d exists: we define S as the set of all irre-
ducible f ∈ A such that µ f = min

{
ord f (a),ord f (b)

}
> 0 and let S′ ⊂ S be a complete

set of representatives for all association classes [ f ] = {g ∈ | f ∼ g} of elements f ∈ S.
Then d = ∏ f∈S′ f µ f is a greatest common divisor of a and b, which concludes the proof
(6)⇒(5).

We turn to (5)⇒(4). By assumption, A satisfies ACCP, and by Lemma 1.7.11, every
element has a factorization. Let a ∈ A be an irreducible element that divides a product
bc of two elements b,c ∈ A, but not b. In order to prove that a is prime, we need to show
that a|c.
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Let d be a common divisor of a and b, i.e. a = a′d and b = b′d. If d /∈ A×, then
a′ ∈ A× since a is irreducible, and thus b = b′d = a(a′)−1b′, which is not possible since
a - b. We conclude that d ∈ A×, and therefore it is in fact a greatest common divisor of a
and b, i.e. gcd(a,b) = 〈d〉= 〈1〉.

By contradiction, let us assume that a - c. Then we also have gcd(a,c) = 〈1〉, which
has the following consequences. If d is a common divisor of a and bc, then also d|ba.
By Exercise 1.18, we have gcd(ba,bc) = 〈b〉gcd(a,c) = 〈b〉, which implies that d|b.
Since gcd(a,b) = 〈1〉, we have d ∼ 1, i.e. gcd(a,bc) = 〈1〉. But our assumption a|bc
implies that gcd(a,bc) = 〈a〉 6= 〈1〉, which is a contradiction. Thus we conclude that
a|c, which shows that a is prime and concludes the proof of (5)⇒(4).

We turn to (4)⇒(1). By Lemma 1.7.11, ACCP implies that every element has a
factorization. Since all irreducible elements are prime, a factorization a = u∏ fi is in
fact a factorization into primes. By Lemma 1.7.9, it is unique, which shows that A is a
unique factorization domain and completes (4)⇒(1). Similarly, the implication (2)⇒(1)
follows at once from Lemma 1.7.9.

We turn to (1)⇒(3). Let I be a nonzero prime ideal of A and a ∈ I−{0}, with
factorization a = u∏ fi. Since I is a prime ideal, it must contain one of the factors fi.
We have already proven the implication (1)⇒(4), which shows that fi is prime, which
exhibits the desired prime element in I. Thus (1)⇒(3).

We turn to (3)⇒(2). Let T be the set of all nonzero elements of A that do not have a
factorization into primes, together with 0. We need to show that T = {0}.

Consider a ∈ T . By Lemma 1.7.9, we have ab ∈ T for all b ∈ A, which shows
that 〈a〉 ⊂ T . Let S be the set of of ideals I of A such that 〈a〉 ⊂ I ⊂ T , which is
partially ordered by inclusion. Then every chain C in S has an upper bound in S, namely
J =

⋃
I∈C I. Indeed, it is clear that 〈a〉 ⊂ J ⊂ T and it is easily proven that J is an ideal

since C is totally ordered by inclusion. Thus Zorn’s Lemma (Theorem A.1.2) applies,
which shows that S has a maximal element Imax.

We claim that Imax is a prime ideal. By contradiction assume that there are a,b ∈
A− Imax with ab ∈ Imax. Then S contains neither 〈Imax∪{a}〉 nor 〈Imax∪{b}〉, which
means that there are elements c1,c2 ∈ Imax and d1,d2 ∈ A such that both s1 = c1 +d1a
and s2 = c2 +d2b are in A−T , i.e. both s1 and s2 have factorizations into primes, and
so does the product s1s2. On the other hand,

s1s2 = c1c2︸︷︷︸
∈Imax

+ d2bc1︸ ︷︷ ︸
∈Imax

+ d1ac2︸ ︷︷ ︸
∈Imax

+ d1d2ab︸ ︷︷ ︸
∈Imax

is an element of Imax, which contradicts our assumption that Imax ⊂ T . Thus we conclude
that Imax is a prime ideal.

Since f = f is tautologically a factorization into primes if f is prime, Imax cannot
contain any prime element. By (3), this is only possible if Imax = {0}, which shows
that a = 0 and S = {0}. This completes the step (3)⇒(2) and concludes the proof of the
theorem.

As a first consequence, we highlight the following auxiliary result that we have
established in the proof of Theorem 1.7.13. Let f ∈ A be irreducible. We recall the
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definition
ord f (a) = max

{
n> 0

∣∣ f n|a
}

for a ∈ A, and that ord f (a) = ordg(a) if f ∼ g. By Exercise 1.25, we have f ∼ g
if 〈 f 〉 = 〈g〉, which reasons that ord f (a) depends only on 〈 f 〉. This yields for every
principal prime ideal p= 〈 f 〉 of A the function ordp : A−{0}→N that sends a∈A−{0}
to the value ordp(a) = ord f (a), which is called the order of a in p. We define P(A)
as the set of principal prime ideals of A and summarize the insights from the proof of
Theorem 1.7.13 as follows.

Corollary 1.7.14. Let A be a unique factorization domain and a,b,d ∈ A. Then the
following hold:

(1) a|b if and only if ordp(a)6 ordp(b) for all p ∈ P(A);

(2) d is a greatest common divisor of a and b if and only if

ordp(d) = min
{

ordp(a),ordp(b)
}

for all p ∈ P(A).

Corollary 1.7.15. Every principal ideal domain is a unique factorization domain.

Proof. Let A be a principal ideal domain. Then every nonzero prime ideal I of A is
generated by a single element a, which is prime by Lemma 1.7.5. Thus by Theorem
1.7.13, A is a unique factorization domain.

As we will see at a later point of this lecture, there are unique factorization domains
that are not principal ideal domains, as, for instance, Z[T ] or polynomial rings in several
variables over a field. It takes some work, however, to prove that factorizations in these
rings are unique, which is why we postpone these examples to a later point. As an
exercise, we encourage the reader to show the easier parts of our claim: Z[T ] is an
integral domain in which every element has a factorization (into irreducible elements),
but that is not a principal ideal domain.

To conclude this section, we use our results about unique factorization domains
to deduce a proof for the Fundamental Theorem of Arithmetic (Theorem 1.7.1) and
Euclid’s Lemma (Theorem 1.7.2).

Corollary 1.7.16. Every positive integer n can be written as a product n = p1 · · · pn
for uniquely determined prime numbers p1, . . . , pn, up to a permutation of indices, and
every prime number is a prime element of Z.

Proof. As a Euclidean domain, Z is a principal ideal domain by Proposition 1.6.7 and
thus a unique factorization domain by Corollary 1.7.15. Therefore every positive integer
a ∈ Z admits a unique factorization n = u∏n

i=1 pi into irreducible elements pi ∈ Z. Note
that Z× = {±1}, and thus [p] = {±p} for every irreducible element p. As explained in
Example 1.7.4, prime numbers are the same thing as positive irreducible elements in
Z, and thus [p] has a unique representative that is a prime number, namely the positive
integer among p and −p. After multiplying all negative pi with −1, we can assume that
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all pi are positive and thus prime numbers. Consequently also the unit u ∈ Z× = {±1}
is positive, i.e. u = 1. This shows that n = p1 · · · pn is a decomposition of n into prime
numbers that is unique up to a permutation of the indices, which establishes our first
claim, which is the Fundamental Theorem of Arithmetic.

By Theorem 1.7.13, every irreducible element of Z is a prime element. With this,
Euclid’s Lemma follows from the very definition of a prime element.

1.8 Localizations
In this section, we generalize the construction of the rational numbers from the integers
to arbitrary rings, which is called a localization. Before we explain this in general, let us
review the construction of the rational numbers.

The rational numbers Q are defined as all fractions a
s of integers a,s∈Z where s 6= 0,

subject to the following rules:

a
s

=
ta
ts
,

a
s
+

b
t

=
ra+ sb

st
a
s
· b

t
=

ab
st

for all a,b ∈ Z and s, t ∈ Z−{0}. The first rule identifies certain fractions, the latter two
rules define addition and multiplication, respectively. We observe that the association
a 7→ a

1 defines a ring homomorphism ι : Z→Q, and that the image a
1 of every nonzero

element a ∈ Z in Q has a multiplicative inverse, which is 1
a .

In the following definition, we generalize this to arbitrary rings. Recall from Defini-
tion 1.3.13 that a multiplicative subset of a ring A is a subset S that contains 1 and ab for
all a,b ∈ S.

Definition 1.8.1. Let A be a ring and S a multiplicative subset. The localization of A at
S is the set

S−1A = (S×A)/∼ =
{a

s

∣∣a ∈ A,s ∈ S
}

where∼ is the equivalence relation on A×S that is defines by (s,a)∼ (s′,a′) if and only
if there is an t ∈ S such that tsa′ = ts′a and where a

s = [(s,a)] denotes the equivalence
class of (s,a), together with the addition

+̂ : S−1A×S−1A −→ S−1A
(a

s ,
b
t ) 7−→ ta+sb

st

and the multiplication

·̂ : S−1A×S−1A −→ S−1A.
(a

s ,
b
t ) 7−→ ab

st

Lemma 1.8.2. Let A be a ring and S a multiplicative subset. Then the localization
S−1A is a well-defined ring, and the association a 7→ a

1 defines a ring homomorphism
ιS : A→ S−1A with ιS(S)⊂ (S−1A)×.
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Proof. We begin with the verification that ∼ is indeed an equivalence relation on
A×S. Let a,a′,a′′ ∈ A and s,s′,s′′ ∈ S. Since 1sa = 1sa, we have (s,a)∼ (s,a), which
shows that ∼ is reflective. Assume that (s,a) ∼ (s′,a′), i.e. tsa′ = ts′a for some t ∈ S.
Then ts′a = tsa′ and (s′,a′) ∼ (s,a), which shows that ∼ is symmetric. Assume that
(s,a)∼ (s′,a′) and (s′,a′)∼ (s′′,a′′), i.e. tsa′ = ts′a and t ′s′a′′ = t ′s′′a′ for some t, t ′ ∈ S.
Then tt ′s′ ∈ S and (tt ′s′)s′′a = tt ′s′′sa′ = (tt ′s′)sa′′, which shows that (s,a) ∼ (s′′,a′′)
and that ∼ is transitive. This shows that ∼ is indeed an equivalence relation.

We continue with the verification that +̂ and ·̂ are well-defined as maps. Consider
a
s =

a′
s′ and b

t =
b′
t ′ , i.e. usa′ = us′a and vtb′ = vt ′b for some u,v ∈ S. Then

uv(ta+ sb)s′t ′ = vtt ′(us′a)+uss′(vt ′b) = vtt ′(usa′)+uss′(vtb′) = uv(t ′a′+ s′b′)st,

which shows that a
s +̂

b
t =

a′
s′ +̂

b′
t ′ , and

uvs′t ′ab = uvsta′b′,

which shows that a
s ·̂bt = a′

s′ ·̂b
′

t ′ . This verifies that both +̂ and ·̂ are well-defined maps.
We turn to the verification that S−1A is a ring with respect to the addition +̂ and the

multiplication ·̂. The additive unit is 0
1 since

a
s
+̂

0
1

=
s ·0+1 ·a

s ·1 =
a
s
,

and the multiplicative unit is 1
1 since

a
s
·̂1
1

=
a ·1
s ·1 =

a
s

for all a ∈ A and s ∈ S. The additive inverse of a
b is −a

b since

a
s
+̂
−a
s

=
as−as

ss
=

0
ss

=
0
1

where we use in the last step that 1 · 1 · 0 = 1 · ss · 0. We leave the associativity and
commutativity of both operations as an exercise, as well as the distributivity.

We continue with the verification that ιS : A→ S−1A is a ring homomorphism with
ιS(S) ⊂ (S−1A)×. We have already shown that ιS(1) = 1

1 is the multiplicative unit of
S−1A. For a,b ∈ A, we have

ιS(a+b) =
a+b

1
=

1 ·a+1 ·b
1 ·1 =

a
1
+̂

b
1

= ιS(a)+̂ιS(b)

and
ιS(ab) =

ab
1

=
a ·b
1 ·1 =

a
1
·̂b
1

= ιS(a)·̂ιS(b),
which verifies that ιS is a ring homomorphism. For s ∈ S, we have

ιS(s)·̂
1
s

=
s
1
·̂1
s

=
1 · s
s ·1 =

1
1

where we use in the last equality that 1 ·1 · (1 · s) = 1 · (s ·1) ·1. Thus ιS(S)⊂ (S−1A)×,
which concludes the proof of the lemma.
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Remark. In the following, we simply write sums and products in S−1A simply as a
b +

b
t

and a
s · b

t , respectively.

Example 1.8.3. We describe some examples of localizations.

(1) To begin with consider A = Z and the multiplicative subset S = Z−{0}. Then
S−1A recovers the construction of the rational numbers Q.

(2) The integers have also other multiplicative subsets. For h ∈ Z, we can consider
S = {1,h,h2, . . . ,} and find

S−1Z =
{ a

hi ∈Q
∣∣a ∈ Z, i> 0

}
.

For a prime number p ∈ Z, we can consider S = Z−〈p〉, which is multiplicatively
closed since 〈p〉 is a prime ideal, and find

S−1Z =
{a

s ∈Q
∣∣a,s ∈ Z such that p - s

}
.

(3) The Gaussian numbers Q[i] are the localization of the Gaussian integers Z[i] at
S = Z[i]−{0}.

Lemma 1.8.4. Let A be a ring and S a multiplicative subset. Then the following hold
true.

(1) For all a,b ∈ A and s, t ∈ S, we have

a
s

=
ta
ts
,

a
s
· s

a
= 1,

a
s
+

b
s

=
a+b

s
.

(2) If 0 ∈ S, then S−1A = {0}.
(3) If A is an integral domain and 0 /∈ S, then ιS : A→ S−1A is an injection.

Proof. The proof is left as Exercise 1.32.

Proposition 1.8.5. Let A be a ring and S a multiplicative subset. Then the localization
S−1A together with ιS : A→ S−1A satisfies the following universal property: for every
ring B and every ring homomorphism f : A→ B with f (A)⊂ B×, there is a unique ring
homomorphism fS : S−1A→ B such that f = fS ◦ ιS, i.e. the diagram

A B

S−1A

f

ιS
�

fS

commutes.
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Proof. We begin with the claim of uniqueness. Assume that fS : S−1A→ B is a ring
homomorphism such that f = fS◦ιS. Since (1

s )
−1 = s

1 in S−1A, we have fS(
1
s )= fS(

s
1)
−1

and thus
fS(

1
s ) = fS(

1
s · a

1) = fS(
s
1)
−1 fS(

a
1) = f (s)−1 f (a)

for all a
s ∈ S−1A, which shows that fS is uniquely determined by f .

We claim that the association a
s 7→ f (s)−1 f (a) describes a well-defined ring homo-

morphism fS : S−1A→ B. Once we have proven this, it follows that fS ◦ ιS(a) = fS(
a
1) =

f (1)−1 f (a) = f (a) for all a ∈ A, as desired.
We begin with the verification that fS is well-defined as a map. Consider a

s = a′
s′ ,

i.e. tsa′ = ts′a for some t ∈ S. Then f (t) f (s) f (a′) = f (t) f (s′) f (a) in B, and after
multiplying this equality with f (t)−1 f (s)−1 f (s′)−1, which is possible since f (S)⊂ B×,
we obtain

fS(
a
s ) = f (s)−1 f (a) = f (s′)−1 f (a′) = fS(

a′
s′ ).

This shows that the definition of fS does not depend on the choice of representative (s,a)
for a class a

s = [(s,a)] ∈ S−1A = S×A/∼.
We continue with the verification that fS is a ring homomorphism. Clearly fS(

1
1) =

f (1)−1 f (1) = 1. Given a
s ,

b
t ∈ B, we have

fS(
a
s +

b
t ) = fS(

ta+sb
st ) = f (s)−1 f (t)−1( f (t) f (a)+ f (s) f (b)

)

= f (s)−1 f (a)+ f (t)−1 f (b) = fS(
a
s )+ fS(

b
t ),

fS(
a
s · b

t ) = fS(
ab
st ) = f (s)−1 f (t)−1 f (a) f (b) = fS(

a
s ) · fS(

b
t ),

which shows that fS is a ring homomorphism and concludes the proof.

There are certain types of localizations that are of particular interest, and generalize
constructions from Example 1.8.3.

Definition 1.8.6. Let A be a ring. For h ∈ A, we define the localization of A at h as
A[h−1] = S−1A where S = {hi}i∈N. For a prime ideal p of A, we define localization of
A at p as Ap = S−1A where S = A−p. If A is an integral domain, and thus 〈0〉 a prime
ideal, we define the field of fractions of A as FracA = A〈0〉.

Remark. In the context of Definition 1.8.6, we remark that h is multiplicatively in-
vertible in A[h−1] with inverse h−1 = 1

h . The field of fractions FracA is indeed a field
since if a

s is nonzero in FracA, then a is nonzero in the integral domain A. Thus s
a is an

element of FracA and a multiplicative inverse of a
s .

In the final part of this section, we study the structure of localizations at prime ideals.

Definition 1.8.7. A local ring is a ring A with a unique maximal ideal.

Lemma 1.8.8. Let A be a local ring with maximal ideal m. Then A× = A−m.
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Proof. Since m is a proper ideal, it does not contain a unit, and thus A× ⊂ A−m.
Conversely, consider a ∈ A−m. Then 〈a〉 is not contained in m. Since every proper
ideal is contained in the unique maximal ideal m by Exercise 1.23, we conclude that
〈a〉= 〈1〉, i.e. ab = 1 for some b ∈ A. This shows that a ∈ A×. Thus A−m⊂ A×, which
concludes the proof.

Lemma 1.8.9. Let A be a ring and p a prime ideal of A. Then Ap is a local ring with
maximal ideal pAp =

{a
s

∣∣a ∈ p,s ∈ A−p
}

.

Proof. We begin with the verification that pAp =
{a

s

∣∣a ∈ p,s ∈ A− p
}

is an ideal.
Clearly, it contains the zero 0

1 of Ap. Given a
s ,

b
t ∈ pAp and c

r ∈ Ap, both

a
s
+

b
t

=
ta+ sb

st
and

a
s
· c

r
=

ac
sr

are in pAp since ta+ sb,ac ∈ p and st,sr ∈ A−p. Thus pAp is an ideal.
If a

s ∈ pAp, then a
s = a′

s′ for some a′ ∈ p and s′ ∈ A− p. Thus tsa′ = ts′a for some
t ∈ A−p. Since a′ ∈ p, also ts′a = tsa′ ∈ p. Since t,s′ /∈ p and p is a prime ideal, we
conclude that a ∈ p. As a result, we conclude that pAp does not contain a unit and thus
is a proper ideal.

On the other hand, if a
s ∈ Ap−pAp, then a ∈ A−p, and thus Ap contains the element

s
a , which is a multiplicative inverse of a

s . This shows that pAp = Ap−A×p . We conclude
that every ideal I of Ap that is not contained in pAp contains a unit, i.e. I = Ap, which
shows that pAp is the unique maximal ideal of Ap.

1.9 Polynomial rings in several variables
In this section, we introduce polynomial rings in several variables. This requires some
notation. Let I be a set. We define

⊕

i∈I

N =
{
(ei)i∈I ∈∏

i∈I
N
∣∣∣ei = 0 for all but finitely many i ∈ I

}
,

which is a monoid with respect to the componentwise addition (ei)+( fi) = (ei+ fi). We
often write e = (ei)i∈I for elements of

⊕
i∈I N. An indexed set is a bijection τ : I→ S

between sets I and S where I is called the index set. Equivalently, we can write S as
{Ti}i∈I where Ti = τ(i). From a given indexed set {Ti}i∈I we derive another indexed set
{T e}e∈⊕i∈I N.

Definition 1.9.1. Let A be a ring and {Ti}i∈I an indexed set. The polynomial ring in
{Ti}i∈I over A is the set

A[Ti|i ∈ I] =
{

∑
e∈⊕

i∈I
N

aeT e
∣∣∣ae ∈ A,ae = 0 for all but finitely many e ∈

⊕

i∈I

N
}
,



38 Rings

together with the addition

+ : A[Ti|i ∈ I]×A[Ti|i ∈ I] −→ A[Ti|i ∈ I]
(∑aeT e,∑beT e) 7−→ ∑(ae +be)T e

and the multiplication

· : A[Ti|i ∈ I]×A[Ti|i ∈ I] −→ A[Ti|i ∈ I].

(∑aeT e,∑beT e) 7−→ ∑
e∈⊕N

(
∑

f+g=e
a f bg

)
T e

Lemma 1.9.2. Let A be a ring and {Ti}i∈I an indexed set. Then A[Ti|i ∈ I] is a ring. For
a∈ A, let ι(a) = ∑aeT e be the element of A[Ti|i∈ I] with ae = a if e = (ei)i∈I with ei = 0
for all i ∈ I and ae = 0 otherwise. This defines a ring homomorphism ι : A→ A[Ti|i ∈ I].

Proof. We leave the proof as Exercise 1.33.

Remark. We make a few observations.

(1) If the indexed set {Ti}i∈I has only one element Ti = T , then we recover the
definition of the polynomial ring in one variable T from Definition 1.3.11. More
precisely, the map

A[Ti|i ∈ I] −→ A[T ]
∑aeT e 7−→ ∑aiT i

is an isomorphism of rings for every ring A if #I = 1.

(2) If I = {1, . . . ,n}, then we also write A[T1, . . . ,Tn] for A[Ti|i ∈ I], and call this ring
the polynomial ring in n variables T1, . . . ,Tn over A. In this case, we also write
T e1

1 · · ·T en
n for T e.

(3) For arbitrary A and I, we write Ti for the element T e with e j = 1 if j = i and
e j = 0 if j 6= i. This realizes {Ti}i∈I as a subset of A[Ti|i ∈ I], and we write
ιI : {Ti}i∈I → A[Ti|i ∈ I] for the inclusion. Elements of this form are called
indeterminates or variables.

Further, we write T
ei1

i1 · · ·T
ein

in for an element T e where {i1, . . . , in} is a finite subset
of I that contains all i ∈ I for which ei 6= 0. Elements of this form are called
monomials.

We also think of A as a subring of A[Ti|i ∈ I], with respect to the inclusion ι from
Lemma 1.9.2, and we write a for ι(a), by abuse of notation.

This notation extends to all elements of A[Ti|i ∈ I], which are sums of mono-
mials and which are called polynomials. Typical examples of polynomials in
R[T1,T2,T3] are T 2

3 −T1T2 and T2 +2.

Sometimes, we use different symbols than Ti for the indeterminates, such as in
X2 +Y 2−1, considered as an element of R[X ,Y,Z].
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Proposition 1.9.3. Let A be a ring and {Ti}i∈I an indexed set. The polynomial ring
A[Ti|i ∈ I] together with the inclusions ι : A→ A[Ti|i ∈ I] and ιI : {Ti}i∈I → A[Ti|i ∈ I]
satisfies the following universal property: for every ring homomorphisms f : A→ B and
every map fI : {Ti}i∈I → B, there is a unique ring homomorphism F : A[Ti|i ∈ I]→ B
such that f = F ◦ ι and fI = F ◦ ιI , i.e. the diagrams

A B

A[Ti|i ∈ I]

f

ι
�

F

and

{Ti}i∈I B

A[Ti|i ∈ I]

fI

ιI �
F

commute.

Proof. If F exists, then f = F ◦ ι and fI = F ◦ ιI imply for every polynomial ∑aeT e ∈
A[Ti|i ∈ I] that

F
(
∑aeT e) = ∑F(ae)∏

i∈I0

F(Ti)
ei = ∑ f (ae)∏

i∈I0

fI(Ti)
ei

where I0 is the finite set of all i ∈ I for which ei 6= 0. This shows that F is uniquely
determined if it exists.

Assuming that the association ∑aeT e 7→ ∑ f (ae)∏i∈I0 fI(Ti)
ei defines a ring homo-

morphism F : A[Ti|i ∈ I]→ B, it follows that F ◦ ι(a) = F(a) = f (a) for all a ∈ A and
F ◦ ιI(Ti) = F(Ti) = fI(Ti) for all i ∈ I, as desired.

We turn to the verification that F is indeed a ring homomorphism. Clearly, F(1) =
f (1) = 1. Given two polynomials ∑aeT e and ∑beT e, we have

F
(

∑aeT e +∑beT e
)

= ∑ f (ae +be)∏ fI(Ti)
ei

= ∑ f (ae)∏ fI(Ti)
ei +∑ f (be)∏ fI(Ti)

ei

= F
(

∑aeT e)+F
(

∑beT e),
F
((

∑aeT e) ·
(

∑beT e)) = ∑
e

(
∑

f+g=e
f (a f ) f (bg)

)
∏ fI(Ti)

ei

=
(

∑ f (ae)∏ fI(Ti)
ei
)
·
(

∑ f (be)∏ fI(Ti)
ei
)

= F
(

∑aeT e) ·F
(

∑beT e),
which shows that F is a ring homomorphism and completes the proof.

1.10 Field extensions
In this section, we study roots of polynomials. The theory that we have developed in
the previous sections allows for a very powerful reinterpretation of the evaluation of a
polynomial in an element, which we explain in the example of a polynomial f = ∑ciT i

with coefficients ci in a ring A. The value of f in an element a is usually defined as

f (a) = ∑ciai,
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where we replace the symbol T in ∑ciT i by the element a of A and interpret the
resulting term ∑ciai as an element of A, using the addition and multiplication of A. If
eva : A[T ]→A is the unique ring homomorphism that extends idA : A→A by eva(T ) = a,
then

eva( f ) = eva

(
∑ciT i

)
= ∑cieva(T )i = ∑ciai = f (a).

The reinterpretation of f (a) as eva( f ) is a powerful approach to study roots of polyno-
mials and leads to the following generalization of the concept of values of polynomials.

Definition 1.10.1. Let α : A→ B be ring homomorphism, f ∈ A[T ] and a ∈ B. Let
evα,a : A[T ]→ B be the ring homomorphism with evα,a(T ) = a and whose restriction to
A is α. We define the value of f in a (with respect to α) as f (a) = evα,a( f ). We say
that a is a root of f if f (a) = 0.

Notation. Often α will be the identity map idA : A→ A or the embedding of a subring
A into a ring B. Usually, we take the ring homomorphism α as given and suppress it
from the notation, i.e. we write eva : A[T ]→ B and say that f (a) = eva( f ) is the value
of f in a if α is apparent from the context.

Lemma 1.10.2. Let α : A→ B and β : B→C be a ring homomorphisms, f ∈ A[T ] and
a ∈ B a root of f with respect to α. Then β(a) is a root of f with respect to β ◦α : A→C.

Proof. If a is a root of f , then evα,a : A[T ]→ B sends f to 0 by the definition of a root.
By the universal property of polynomial rings (Proposition 1.3.12), evβ◦α,β(a) : A[T ]→C
is equal to β ◦ evα,a. Thus we have evβ◦α,β(a)( f ) = β

(
evα,a( f )

)
= β(0) = 0, which

shows that β(a) is a root of f , as claimed.

Proposition 1.10.3. Let K be a field, f ∈ K[T ] a polynomial of positive degree and
a ∈ K a root of f . Then there is a unique polynomial g ∈ K[T ] such that f = (T −a)g,
and this polynomial has degree degg = deg f −1.

Proof. The uniqueness of g is clear since K[T ] is an integral domain and thus the
multiplication by T −a is injective. It is also clear that deg f = deg(T −a)+degg =
1+degg if f = (T −a)g.

As our next step, we show that ker(eva) = 〈T −a〉. Since eva(T −a) = a−a = 0,
we have 〈T−a〉 ⊂ ker(eva). To prove the inverse inclusion, note that T−a is irreducible
in K[T ], cf. Example 1.7.4. Since K[T ] is a principal ideal domain, cf. Example 1.6.4
and Proposition 1.6.7, the ideal 〈T −a〉 generated by T −a is maximal, cf. Exercise 1.24.
Since eva(1) = 1, the ideal ker(eva) is proper, and thus 〈T −a〉 ⊂ ker(eva) implies that
ker(eva) = 〈T −a〉.

By our assumptions, eva( f ) = f (a) = 0, which means that f ∈ ker(eva) = 〈T −a〉.
Thus f = (T −a)g for some g ∈ K[T ], as desired, which concludes the proof.

Remark. In fact, the polynomial g with f = (T − a)g in Proposition 1.10.3 can be
found by using polynomial division.

Corollary 1.10.4. Let A be an integral domain and f ∈ A[T ] a nonzero polynomial of
degree n. Then f has at most n pairwise distinct roots in A.
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Proof. If f has has k pairwise distinct zeros a1, . . . ,ak ∈ A, then by Lemma 1.10.2 also
a1
1 , . . . ,

ak
1 ∈ FracA are k pairwise distinct roots of f . Thus we can assume without loss

of generality that A = K is a field.
We prove the result by induction on n = deg f . If n = 0, then f = b is a nonzero

constant, which has no root in K.
If n > 0 and a is a root of f , then Proposition 1.10.3 implies that f = (T −a)g for

some g ∈ K[T ] with degg = deg f − 1. If b is a another root of f , then evb(T − a) ·
evb(g) = evb( f ) = 0, and thus either evb(T −a) = 0, i.e. b = a, or evb(g) = 0, i.e. b is
a root of g. By the inductive hypothesis, g has at most n−1 pairwise distinct roots in K,
which implies that f has at most n distinct roots, as claimed.

Definition 1.10.5. A field extension is a ring homomorphism α : K→ L of fields. The
degree of L over K is the dimension [L : K] = dimK L of L as a K-vector space. A field
extension α : K→ L is finite if [L : K] is finite.

Notation. We write L/K for a field extension if α is clear from the context. We also say
that L is an extension field of K. Note that a field extension α : K→ L is injective, cf.
Exercise 1.15.

Proposition 1.10.6. Let K be a field and f ∈ K[T ] an irreducible polynomial. Then
L = K[T ]/〈 f 〉 is a field and the canonical homomorphism α : K→ K[T ]→ L is a field
extension. The class T of T in L is a root of f . If β : K→ A is a ring homomorphism
and a ∈ A is a root of f with respect to β, then there is a unique ring homomorphism
β̄ : L→ A with β = β̄ ◦α and β̄(T ) = a.

Proof. Since K[T ] is a principal domain, cf. Example 1.6.4 and Proposition 1.6.7, the
irreducible polynomial f generates a maximal ideal 〈 f 〉, cf. Exercise 1.24. By Lemma
1.3.14, L = K[T ]/〈 f 〉 is a field, and thus α : K → L a field extension. By definition
of L = K[T ]/〈 f 〉, the quotient map evT : K[T ]→ L maps f to evT ( f ) = f = 0, i.e.
T = evT (T ) is a root of f .

By the universal property of polynomial rings (Proposition 1.9.3), a ring homo-
morphism β : K → A and an element a ∈ B determine a unique ring homomorphism
β̂ : K[T ]→ B with β̂|K = β and β̂(T ) = a. If a is a root of f , then 〈 f 〉 ⊂ ker(eva).
Thus the universal property of the quotient evT : K[T ]→ L (Proposition 1.3.8), implies
that there is a unique morphism β̄ such that β̂ = β̄ ◦ evT , and thus β = β̄ ◦α, and
β̄(T ) = a.

Corollary 1.10.7. Let K be a field and f ∈ K[T ] a polynomial of positive degree. Then
there is a field extension L/K that contains a root a ∈ L of f .

Proof. Since K[T ] is a unique factorization domain, f has a factorization into irreducible
elements. Let f0 be an irreducible divisor of f and L=K[T ]/〈 f0〉. By Proposition 1.10.6,
L is a field extension of K and the class T of T in L is a root of f0. Thus f0 ∈ ker(evT )
and also f ∈ ker(evT ), which shows that T ∈ L is a root of f .

Definition 1.10.8. A field K is algebraically closed if every polynomial f ∈ K[T ] of
positive degree has a root in K.
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Example 1.10.9. The fundamental theorem of algebra asserts that C is algebraically
closed.

Proposition 1.10.10. Let K be an algebraically closed field.

(1) For every polynomial f ∈ K[T ] of degree n, there are elements u,a1, . . . ,an ∈ K
such that f = u∏n

i=1(T −ai).

(2) Every finite field extension K→ L is an isomorphism.

Proof. We prove (1) the claim by induction in n = deg f . If n = 0, then f = u ∈ K. If
n > 0, then f has a root an ∈ K since K is algebraically closed. By Proposition 1.10.6,
f = (T −an)g for a polynomial g ∈ K[T ] of degree n−1. By the inductive hypothesis,
g = u∏n−1

i=1 (T −an), and thus f = u∏n
i=1(T −an), as claimed.

To prove (2), consider a finite field extension α : K→ L and a ∈ L, which determines
a morphism eva : K[T ]→ L that extends α and maps T to a by the universal property of
polynomial rings (Proposition 1.9.3). The subring im(eva) of L is an integral domain
and thus ker(eva) a prime ideal of K[T ] by Lemma 1.3.14. Since K[T ] =

⊕
i>0 K ·T i

is a K-vector space of infinite dimension, but dimK L is finite, eva cannot be injective.
Since K[T ] is a principal ideal domain, the nonzero prime ideal ker(eva) is generated
by an irreducible polynomial f ∈ K[T ], cf. . By (1), f = u(T −b) for some u,b ∈ K, i.e.
eva(T −b) = 0. We conclude that α(b) = eva

(
T − (T −b)

)
= eva(T )−eva(T −b) = a.

This shows that the injective ring homomorphism α : K→ L is surjective and thus an
isomorphism, as claimed.

1.11 Gauss’s lemma and polynomial rings over unique
factorization domains

In this section, we study Gauss’s lemma and apply it to prove that polynomial rings over
unique factorization domains are again unique factorization domains. Throughout the
section, A is a unique factorization domain and K = FracA its field of fractions. We
consider A as a subring of K and write a for a

1 ∈ K.
Recall from Section 1.7, in particular see Corollary 1.7.14, that P(A) is the set of

principal prime ideals of A and that we define for every p = 〈 f 〉 in P(A) the function
ordp : A−{0}→ N with values ordp(a) = max

{
n> 0

∣∣ f n|a
}

, which we call the order
of a in p.

Recall further that if a = u∏ pi is a factorization into prime elements pi ∈ A, then
ordp(a) = #{i | 〈pi〉 = p} is the number of prime factors pi in this factorization that
generate p. Since these numbers add up in products, we gain the formula

ordp(ab) = ordp(a)+ordp(b).

The main result of this section, Gauss’s lemma, extends this formula to the content of
polynomials over K.

As a first step, we generalize the concept of the order in p to K and K[T ].
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Definition 1.11.1. Let p ∈ P(A) and a
b ∈ K×. The order of a

b in p is

ordp

(a
b

)
= ordp(a)−ordp(b).

Let f = ∑ciT i be a nonzero polynomial in K[T ] of degree n. The order of f in p is

ordp( f ) = min
i=0,...,n

{
ordp(ci)

}
.

Remark. The value ordp(
a
b) is well-defined, as can be seen as follows. If a

b = a′
b′ in K,

i.e. ab′ = a′b in A, then ordp(a)+ordp(b′) = ordp(a′)+ordp(b) and thus

ordp(
a
b) = ordp(a)−ordp(b) = ordp(a′)−ordp(b′) = ordp(

a′
b′ ),

which shows that ordp(
a
b) does not dependent on the representative for a

b .

Example 1.11.2. Let A = Z and K =Q. Consider a prime number p ∈ Z and the prime
ideal p= 〈p〉. Then we have ordp(api) = i for all i> 0 and a ∈ Z such that p - a. Thus
ordp(

a
b pi) = i for all i ∈ Z and a,b ∈ Z with p - ab.

As an example, we examine the orders of the polynomial f = 6T 2 + 3
2T −9 ∈Q[T ]:

ord〈2〉( f ) = −1, ord〈3〉( f ) = 1, and ord〈p〉( f ) = 0

for all prime numbers p> 5.

Definition 1.11.3. A principal fractional ideal of A is a subset of K of the form
〈a〉A = {ca ∈ K | c ∈ A} for some a ∈ K. Given two principal fractional ideals I and J
of A, we define their product as the principal fractional ideal

I · J = {ab | a ∈ I,b ∈ J}.

Given a prime ideal p= 〈p〉 and n∈Z, we define its n-th power as the principal fractional
ideal pn = 〈pn〉A.

Remark. Note that if I = 〈a〉A and J = 〈b〉A for some a,b ∈ K, then I ·J = 〈ab〉A, which
shows that I ·J is indeed a principal fractional ideal. Note further that this coincides with
the usual product of ideals if I and J are ideals of A. Similarly, pn is the usual n-fold
self-product of p if n is positive. Finally we note that a principal fractional ideal I of A is
an ideal of A if and only if I ⊂ A.

Example 1.11.4. Let A = Z and K = Q. The principal fractional ideal generated by
a
b ∈Q× is

〈a
b〉Z = {na

b ∈Q | n ∈ Z},
which is the additive subgroup of Q generated by a

b . If p∈Z is prime, then 〈p〉−1
Z = 〈 1

p〉Z.
If

a
b

=
p1 · · · pr

q1 · · ·qs
, then

〈a
b

〉
Z

= 〈p1〉Z · · · 〈pr〉Z · 〈q1〉−1
Z · · · 〈qs〉−1

Z .
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We finally are prepared to introduce the central concept of this section, which is the
content of a polynomial.

Definition 1.11.5. Let f ∈ K[T ] be a nonzero polynomial. The content of f is the
principal fractional ideal

cont( f ) = ∏
p∈P(A)

pordp( f ),

and f is primitive if cont( f ) = 〈1〉A.

Remark. Note that the product ∏pordp( f ) in the definition of the content of a polynomial
f ∈ K[T ] is finite since for every nonzero a ∈ A with factorization a = u∏ pi, there are
only finitely many p ∈ P(A) such that ordp(a) = #{pi | p= 〈pi〉} is nonzero.

Choose a generator pp for every p ∈ P(A). Since 〈a〉 · 〈b〉= 〈ab〉, we have

cont( f ) =
〈

∏
p∈P(A)

pordp( f )
p

〉
A
.

In the literature, sometimes the content of a polynomial is defined as the element
∏ pordp( f )

p , which is an element of K that is well-defined up to taking associates. This is
particularly appealing if there a natural choices of generators of prime ideals, such as
the positive prime numbers in Z.

Example 1.11.6. Let A = Z and K = Q. Consider the polynomial f = 6T 2 + 3
2T −9

from Example 1.11.2. Its content is

cont( f ) = ∏
p∈P(Z)

pordp( f ) = 〈2〉−1
Z · 〈3〉Z =

〈3
2

〉
Z
.

An example of a primitive polynomial is f = 6T 2 +2T −9.

Lemma 1.11.7. Consider a ∈ K× and f ∈ K[T ]. Then the following hold true:

(1) a ∈ A if and only if ordp(a)> 0 for all p ∈ P(A);

(2) a ∈ A× if and only if ordp(a) = 0 for all p ∈ P(A);

(3) f ∈ A[T ] if and only if cont( f )⊂ A;

(4) cont(a f ) = 〈a〉A · cont( f );

(5) cont(a) = 〈a〉A.

Proof. Let a = b
c with b,c ∈ A. Then b

c ∈ A if and only if c|b, which is equivalent with
ordp(a) = ordp(b)− ordp(c) > 0 for all P(A) by Corollary 1.7.14. Thus (1). Since
b
c ∈ A× if and only if b|c and c|b, this implies (2) at once.

If f ∈ A[T ], then ordp( f ) > 0 for all p ∈ P(A) and thus cont( f ) ⊂ A. Conversely,
assume that cont( f ) ⊂ A. As remarked before, cont( f ) = 〈∏ pordp( f )

p 〉 where the
product is taken over all p ∈ P(A) such that ordp( f ) 6= 0 and pp is a chosen generator
of each p. Thus we have cont( f )⊂ A if and only if ∏ pordp( f )

p ∈ A, which is the case if
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and only if ordp( f )> 0 for all p ∈ P(A). This can only happen if all coefficients ai of f
have positive order ordp(ai) in all p ∈ P(A), i.e. ai ∈ A. This shows that f ∈ A[T ]. Thus
(3).

Since ordp(aci) = ordp(a)+ordp(ci) for every coefficient ci of f = ∑ciT i, we have

cont(a f ) =
〈

∏
ordp(a f )6=0

pordp(a f )
p

〉
=
〈

∏
ordp(a f )6=0

pordp(a)+ordp( f )
p

〉

=
〈

∏
ordp(a)6=0

pordp(a)
p · ∏

ordp( f )6=0
pordp( f )
p

〉
= 〈a〉A · cont( f )

where pp is a generator of p. This shows (4).
In particular, (4) implies cont(a) = 〈a〉A · cont(1) = 〈a〉A · 〈1〉= 〈a〉A, which shows

(5) and concludes the proof.

Theorem 1.11.8 (Gauss’s lemma). Let f ,g ∈ K[T ] be nonzero polynomials. Then

cont( f g) = cont( f ) · cont(g).

Proof. Let p ∈ P(A). We begin with the proof of the claim that if f ,g ∈ A[T ] and
ordp( f ) = ordp(g) = 0, then ordp( f g) = 0. To this end, we consider the ring homo-
morphism α : A[T ]→ (A/p)[T ] that sends a polynomial f = ∑ciT i to f̄ = ∑ c̄iT i where
c̄i ∈ A/p is image of ci under the canonical surjection A→ A/p. Thus if f = ∑ciT i, then
ordp(∑ciT i) = 0 if and only if ci /∈ p for some i, which is the case if and only if c̄i 6= 0
for some i, i.e. f̄ 6= 0 in (A/p)[T ]. Thus ordp( f ) = ordp(g) = 0 implies that f̄ and ḡ
are nonzero in (A/p)[T ]. Since p is a prime ideal, A/p is an integral domain, and so is
(A/p)[T ]. Thus f̄ ḡ 6= 0, which means that ordp( f g) = 0, as claimed.

Consider arbitrary nonzero f ,g ∈ K[T ] and let c f ,cg ∈ K× be generators of the
content of f and g, respectively, i.e. cont( f ) = 〈c f 〉A and cont(g) = 〈cg〉A. Then
f0 = c−1

f f and g0 = c−1
g g have content cont( f0) = 〈c f 〉−1

A cont( f ) = 〈1〉 and cont(g0) =

〈cg〉−1
A cont(g) = 〈1〉. By Lemma 1.11.7, f0,g0 ∈ A[T ] and ordp( f0) = ordp(g0) = 0

for all p ∈ P(A). By what we have proven before, ordp( f0g0) = 0 for all p ∈ P(A), and
thus

cont( f g) = 〈c f cg〉A · cont( f0g0)︸ ︷︷ ︸
=〈1〉

= 〈c f 〉A · 〈cg〉A = cont( f ) · cont(g),

which completes the proof.

Theorem 1.11.9. Let A be a unique factorization domain and K = FracA. Then A[T ] is
a unique factorization domain whose prime elements are the prime elements of A and
the primitive irreducible polynomials in K[T ].

Proof. Since A is an integral domain, deg( f g) = deg f +degg for all f ,g∈ A[T ]. Thus,
in particular, A[T ]× = A×.

Let p ∈ A be irreducible and p = gh a factorization in A[T ]. Then g,h ∈ A and thus
g ∈ A× or h ∈ A× since p is irreducible. This shows that p is irreducible in A[T ].
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Let f ∈ K[T ] be a primitive irreducible polynomial and f = gh a factorization with
g,h∈ A[T ]. Since f is irreducible, g∈K× or h∈K×. Without loss of generality, we may
assume that g ∈ K×, i.e. in fact g ∈ A−{0}. By Lemma 1.11.7 (5), we have cont(g) =
〈g〉A. Since cont(g) ·cont(h) = cont( f ) = 〈1〉 by Gauss’s lemma (Theorem 1.11.8) and
both cont(g) and cont(h) are contained in A, we must have cont(g) = cont(h) = 〈1〉.
Thus 〈g〉= 〈1〉, which shows that g ∈ A×. This shows that f is irreducible in A[T ].

Our next step is to show that every nonzero polynomial f ∈ A[T ] has a factorization
into irreducible elements of the exhibited forms. Let f = u∏gi be a factorization in
K[T ], i.e. u ∈ K× and gi ∈ K[T ] are irreducible. We let ci ∈ K× be elements such that
cont(gi) = 〈ci〉 and define gi,0 = c−1

i gi, which are polynomials of content 〈1〉 and thus
primitive and in A[T ]. Since gi,0 and gi are associated in K[T ], gi,0 is irreducible in K[T ],
and since it is primitive, it is irreducible in A[T ], as shown above. If u0 = ∏ci, then
f = u0 ∏gi,0. By Gauss’s lemma (Theorem 1.11.8), we have

〈u0〉 = 〈u0〉∏contgi,0︸ ︷︷ ︸
=〈1〉

= cont
(
u0 ∏gi,0

)
= cont( f ) ⊂ A,

which shows that u0 ∈ A. Let u0 = v∏ p j be a factorization into irreducible elements
pi in A, which are irreducible in A[T ] by what we have shown above. This yields the
factorization f = v∏ pi ∏gi,0 of f in A[T ]. We conclude that every nonzero polynomial
of A[T ] has a factorization into irreducible factors of the exhibited forms.

Moreover, we conclude that we have found all irreducible elements of A[T ]. Indeed,
let f ∈ A[T ] be irreducible and f = u∏gi a factorization into irreducible elements of
the exhibited forms. Since f is irreducible, this factorization contains precisely one
irreducible factor g1, which is either a prime in A or a primitive irreducible polynomial
in K[T ]. Thus f = ug1 is of this form as well.

We conclude the proof by establishing the uniqueness of factorizations. Consider
two factorizations

f = u
r

∏
i=1

pi

n

∏
i=1

gi = v
s

∏
i=1

qi

m

∏
i=1

hi

where pi,qi ∈A are prime and gi,hi ∈K[T ] are primitive and irreducible. Then ũ= u∏ pi
and ṽ = v∏qi are in K× and thus f = ũ∏gi = ṽ∏hi are factorizations in K[T ]. Since
K[T ] is a unique factorization domain, there is a bijection σ : {1, . . . ,n} → {1, . . . ,m}
such that gi ∼ hσ(i) for all i = 1, . . . ,n. Thus ∏gi = w∏hi for some w∈K×. By Gauss’s
lemma (Theorem 1.11.8) and Lemma 1.11.7 (5), we have ∏cont(gi) = 〈w〉A ·∏cont(hi).
Since cont(gi) = cont(hi) = 〈1〉, we have 〈w〉A = 〈1〉 and thus w ∈ A×. Since A[T ] is
an integral domain, we can cancel the factor ∏hi in the equality

u
r

∏
i=1

pi

(
w

n

∏
i=1

hi

)
= u

r

∏
i=1

pi

n

∏
i=1

gi = v
s

∏
i=1

qi

n

∏
i=1

hi,

which yields that equality (uw)∏ pi = v∏qi. Since A is a unique factorization domain,
there is a bijection τ : {1, . . . ,r} → {1, . . . ,s} such that pi ∼ qτ(i) for all i = 1, . . . ,r.
This shows that f has a unique factorization and concludes the proof of the theorem.
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Corollary 1.11.10. Let A be a unique factorization domain and n> 1. Then A[T1, . . . ,Tn]
is a unique factorization domain.

Proof. This follows immediately by induction over n from Theorem 1.11.9.

1.12 Irreducibility criteria
In this section, we develop some criteria for the irreducibility of polynomials over fields
and unique factorization domains.

Lemma 1.12.1. Let A be a unique factorization domain, K = FracA and f ∈ K[T ] a
primitive polynomial. Then f is irreducible in A[T ] if and only if f is irreducible in
K[T ].

Proof. If f is irreducible in K[T ], then is is irreducible in A[T ] by Theorem 1.11.9.
Conversely, assume that f is irreducible in A[T ] and consider a factorization f = gh in
K[T ]. Choose cg,ch ∈ K× with cont(g) = 〈cg〉A and cont(h) = 〈ch〉A and define g0 =

c−1
g g and h0 = c−1

h h. By Lemma 1.11.7 (5), we have cont(g0) = 〈c−1
g 〉A · cont(g) = 〈1〉

and cont(h0) = 〈c−1
h 〉A · cont(h) = 〈1〉, which shows that g0,h0 ∈ A[T ]. Since

〈cgch〉A = 〈cgch〉A · cont(g0h0)︸ ︷︷ ︸
=〈1〉

= cont(cgchg0h0) = cont(gh) = cont( f ) = 1,

we see that cgch ∈ A×. Thus f = (cgch)g0h0 is a factorization in A[T ]. Since f is
irreducible, either g0 ∈ A× or h0 ∈ A×, which means that either g = cgg0 ∈ K× or
h = chh0 ∈ K×. This shows that f is irreducible in K[T ].

Lemma 1.12.2. Let A be a unique factorization domain and f ∈ A[T ] a polynomial of
degree at least 2. If f has a root in A, then f is not irreducible in A[T ].

Proof. If a∈ A is a root of f , then f = (T−a)g for some g∈K[T ] by Proposition 1.10.3.
Since cont(T −a) = 〈1〉, we conclude that cont(g) = cont( f ) and thus g ∈ A[T ]. Since
degg = deg f −1> 1, the polynomial g is not a unit in A[T ], which shows that f is not
irreducible.

Proposition 1.12.3. Let A be a unique factorization domain, K = FracA and f ∈ A[T ]
a primitive polynomial of degree 2 or 3. If f has no root in K, then f is irreducible in
A[T ].

Proof. If f = gh in A[T ], then cont(g) = cont(h) = 1. If degg = 1, i.e. g = aT −b for
a,b ∈ A with a 6= 0, then b

a ∈ K is a root of g and therefore of f . Thus degg 6= 1, and
similarly degh 6= 1. Since degg+degh = deg f is 2 or 3, we conclude that degg = 0
or degh= 0. Since cont(g) = cont(h) = 〈1〉, we conclude that g∈ A× or h∈ A×, which
shows that f is irreducible.

Proposition 1.12.4 (Eisenstein criterion). Let A be a unique factorization domain, p∈ A
a prime element, f = ∑aiT i a polynomial in A[T ] of degree n> 1 and K = FracA. If
p | ai for i = 0, . . . ,n−1, but p - an and p2 - a0, then f is irreducible in K[T ].
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Proof. Consider f = gh with g,h ∈ K[T ]. We intend to show that one of g and h is a
unit in K[T ], i.e. a nonzero constant polynomial. Since f 6= 0, it is clear that g 6= 0 and
h 6= 0.

We have g = cgg0 and h = chh0 for some primitive g0,h0 ∈ A[T ] and cg,ch ∈ K
with cont(g) = 〈cg〉 and cont(h) = 〈ch〉. Since cont( f ) = cont(gh) = 〈cgch〉, also
c = cgch ∈ A, and thus f = cg0h0 is an equation in A[T ]. If we can show that one of
g0 and h0 is a constant polynomial, then one of g and h is constant. Thus we assume
without loss of generality that g,h ∈ A[T ].

Let g=∑biT i and h=∑ciT i. Then by our assumptions, p | a0 = b0c0 and thus p | b0
or p | c0. By the symmetry of g and h, we can assume that p | b0. Since p2 - a0 = b0c0,
we conclude that p - c0. Since p - an = bkcl , where k = degg and l = degh, we have
p - bk, and thus m = min{i ∈ N | p - bi} exists. Then

am = bmc0︸︷︷︸
/∈〈p〉

+bm−1c1 + . . .+b0cm︸ ︷︷ ︸
∈〈p〉

is not in 〈p〉, i.e. p - am. Since p | ai for i = 0, . . . ,n−1, we conclude that m = n, which
shows that degh = n−m = 0. This shows that h is invertible in K[T ], which concludes
the proof that f is irreducible in K[T ].

Example 1.12.5. We can apply the Eisenstein criterion (Proposition 1.12.4) to the
polynomial f = T 5−2T +6 ∈ Z[T ] and the prime number 2 to deduce that f is irre-
ducible in Q[T ]. Since f is primitive, it is also irreducible in Z[T ]. For the same reason,
3 f = 3T 5−6T +18 is irreducible in Q[T ], but it is not primitive and not irreducible in
Z[T ].

Proposition 1.12.6 (Reduction criterion). Let A be a unique factorization domain, B an
integral domain, K = FracA and L = FracB. Let α : A→ B be a ring homomorphism
and α̂ : A[T ]→ B[T ] the extension of α with α̂(T ) = T . Let f ∈ A[T ] and f̂ = α̂( f ). If
deg f̂ = deg f and if f̂ is irreducible in L[T ], then f is irreducible in K[T ].

Proof. Consider f = gh ∈ K[T ]. After multiplying g and h with a suitable unit of K,
we can assume that g,h ∈ A[T ]. Let ĝ = α̂(g) and ĥ = α̂(h). Then f̂ = ĝĥ. Since
deg ĝ+deg ĥ = deg f̂ = deg f = degg+degh, we have deg ĝ = degg and deg ĥ =
degh. Since f̂ is irreducible in L[T ], one of ĝ and ĥ has degree 0. Thus one of g and h
has degree 0, which shows that f is irreducible in K[T ].

Example 1.12.7. Consider f = 13T 3+15T +7∈Z[T ] and the quotient map α :Z→F2.
Then f̂ = T 3 +T +1 has the same degreee as f . Since f̂ does not have any root in F2,
Proposition 1.12.3 implies that f̂ is irreducible in F2[T ]. Thus by the reduction criterion
(Proposition 1.12.6), f is irreducible in Q[T ]. Since f is primitive, it is irreducible in
Z[T ] by Theorem 1.11.9.

1.13 Exercises
Exercise 1.1. Proof Lemma 1.1.5.
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Exercise 1.2 (Group homomorphisms). Let G and H be commutative groups. A group
homomorphism between G and H is a map f : G→ H such that f (ab) = f (a) f (b)
for all a,b ∈ G.

(1) Let f : G→ H be a group homomorphism. Show that f (eG) = eH and f (a−1) =
f (a)−1 for all a ∈ G where eG is the neutral elements of G and eH is the neutral
element of H.

(2) Show that the identity map id : G→ G is a group homomorphism and that the
composition g◦ f : G→H ′ of two group homomorphisms f : G→H and g : H→
H ′ is a group homomorphism.

Exercise 1.3 (Universal property of quotient groups). Let H be a subgroup of a com-
mutative group G and G/H the quotient. Show that the association a 7→ [a] defines
a group homomorphism π : G→ G/H with π(H) = {0}. Show that for every group
homomorphism f : G→ G′ with f (H) = {0}, there is a unique group homomorphism
f̄ : G/H→ G′ such that f = f̄ ◦π, i.e. the diagram

G G′

G/H

f

π
�

f̄

commutes.

Exercise 1.4 (Cyclic groups). Let G be a commutative group and a ∈ G. We define

an = a · · ·a︸ ︷︷ ︸
n-times

for n > 0, a0 = e, and an = a−1 · · ·a−1
︸ ︷︷ ︸
−n-times

for n < 0.

We call G a cyclic group if there is an element a ∈ G such that every other element
b ∈ G is of the form b = an for some n ∈ Z.

(1) Show that there is a cyclic group Cn for every n> 1.

(2) Are there infinite cyclic groups?

Exercise 1.5. Let A be a ring and B⊂ A a subset. Prove that B is a subring if and only if
addition α and multiplication µ of A restrict to maps αB : B×B→ B and µB : B×B→ B,
respectively, such that (B,αB,µB) is a ring and such that the inclusion map B→ A is a
ring homomorphism.

Exercise 1.6. Show that every finite integral domain is a field.

Exercise 1.7 (Gaussian integers). Let i ∈C be a square root of−1. Show that the subset
Z[i] = {a+bi ∈ C|a,b ∈ Z} is a subring of C. Is Z[i] an integral domain? Is it a field?
Show that Q[i] = {a+bi|a,b ∈Q} is a subring of C that is a field.

Remark: Z[i] is called the ring of Gaussian integers.
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Exercise 1.8. Proof Lemma 1.3.2.

Exercise 1.9. Show that the set C∞(R) of all smooth functions f : R→ R is a ring with
respect to value-wise addition and multiplication, i.e. ( f + g)(x) := f (x)+ g(x) and
( f ·g)(x) := f (x) ·g(x). Which of the following maps are ring homomorphisms?

(1) eva : C∞(R)→ R with eva( f ) := f (a) where a ∈ R;

(2) d : C∞(R)→ C∞(R) with d( f ) := d f
d t .

Exercise 1.10. Let A be a ring. Show that A[T ] with the addition and multiplication
as defined in Definition 1.3.11 is indeed a ring with zero is 0 and one 1. Show that
the realization of elements a ∈ A as constant polynomials defines an injective ring
homomorphism A→ A[T ]. Under which conditions on A is A[T ] an integral domain?

Exercise 1.11. Show that the set Fp[T ] = {∑n
i=0 aiT i|n > 0,ai ∈ Fp} of polynomials

with coefficients in Fp forms a ring w.r.t. to the addition ∑aiT i +∑biT i = ∑(ai +bi)T i

and the multiplication

(
n

∑
i=0

aiT i ) · (
m

∑
j=0

b jT j ) :=
n+m

∑
k=0

(
∑

i+ j=k
aib j

)
T k.

Which of the following maps are ring homomorphisms?

(1) evc : Fp[T ]→ Fp with evc(∑aiT i) = ∑aici where c ∈ Fp;

(2) Frob : Fp[T ]→ Fp[T ] with ∑aiT i→ ∑aiT pi.

Exercise 1.12. Show that the embedding i : R→ R[T ] of real numbers as constant
polynomials is a ring homomorphism. Show that R[T ] together with i : R→ R[T ]
satisfies the following universal property. For every ring homomorphism f : R→ B and
for every map f̃ : {T}→ B, there is a unique ring homomorphism F : R[T ]→ B such
that f = F ◦ i and F(T ) = f̃ (T ).

Exercise 1.13. Let A be a ring and {Ii}i∈I be a family of ideals in A.

(1) Show that the intersection
⋂

i∈I Ii is an ideal of A.

(2) For finite I, show that the product ∏i∈I Ii = ({∏ai|ai ∈ Ii}) is an ideal of A that is
contained in

⋂
i∈I Ii. Under which assumption is ∏ Ii =

⋂
Ii?

(3) For finite I, show that ∑ Ii is indeed an ideal.

(4) Let f : A→ B be a ring homomorphism and I an ideal of B. Show that f−1(I) is
an ideal of A. Show that f−1(I) is prime if I is prime. Is f−1(I) maximal if I is
maximal? Is the image f (J) of an ideal J of A an ideal of B?

Exercise 1.14. (1) Describe all ideals of Z. Which of them are principal ideals, which
of them are prime and which of them are maximal?

(2) Let f ∈ R[T ] be of degree 6 2. When is ( f ) a prime ideal, when is it a maximal
ideal? When is the quotient ring isomorphic to R? When is it isomorphic to C?
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Exercise 1.15. Let K be a field and α : K→ A a ring homomorphism. Show that α is
injective unless A is the trivial ring.

Exercise 1.16. Let A be a ring and A× its unit group.

(1) Show that the map
A××A× −→ A×

(a,b) 7−→ ab

is well-defined and turns A× into an abelian group.

(2) Let f : A→ B be a ring homomorphism. Show that f (A×) ⊂ B× and that the
restriction f |A× : (A×, ·)→ (B×, ·) of f is a group homomorphism.

(3) Show that the map A××A→ A, defined by (a,b) 7→ ab is a group action of (A×, ·)
on A.

(4) Show that (a) = A if and only if a ∈ A×.

(5) Let A be an integral domain. Consider the map Φ : A→{ideals of A} that sends
a to the principal ideal (a) of A. Show that Φ(a) = Φ(b) if and only if a and b are
contained in the same orbit of the action of A× on A, i.e. a∼ b.

Exercise 1.17. Let e1, . . . ,en be pairwise coprime positive integers. Show that the
underlying additive group of Z/e1Z×·· ·×Z/enZ is a cyclic group.

Exercise 1.18. Let A be an integral domain and a,b,c,d,e ∈ A.

(1) Show that if d is a greatest common divisor of b and c and e is a greatest common
divisor of ab and ac, then (e) = (ad). Conclude that gcd(ab,ac) = (a) ·gcd(b,c).

(2) If A is a principal ideal domain, then d is a greatest common divisor of a and b
if and only if (a,b) = (d). Conclude that every two elements of a principal ideal
domain have a greatest common divisor.

(3) Find an integral domain A with elements a,b,d ∈ A such that d is a greatest
common divisor of a and b, but (a,b) 6= (d).

Exercise 1.19. Let A be a Euclidean domain and a,b ∈ A. Show that in general the
sequence r0, . . . ,rn,q2, . . . ,qn+1 ∈ A nor its length n are uniquely determined. In particu-
lar, find an example of integers a,b ∈ Z and sequences r0, . . . ,rn,q2, . . . ,qn+1 ∈ Z and
r0, . . . ,rm,q2, . . . ,qm+1 ∈ Z of different lengths n 6= m that each satisfy the assumptions
of the Euclidean algorithm.

Exercise 1.20 (Polynomial division). Let K be a field. Use polynomial division to show
that K[T ] is a Euclidean domain.

∗Exercise 1.21. Show that the ring Z[T ]/〈T 2−T + 5〉 is a principal ideal domain but
not a Euclidean domain. This can be done along the following steps.

(1) Reason that N(a+bT ) = a2+ab+5b2 defines a map N : Z[T ]/〈T 2−T +5〉→N.
Show that N(0) = 0, N(1) = 1 and N(xy) = N(x)N(y). Use the map N to show
that the units of Z[T ]/〈T 2−T +5〉 are ±1 and that 2 and 3 are irreducible.



52 Rings

(2) Show that every Euclidean domain A that is not a field contains an element a /∈
A×∪{0} such for every b∈ A there is an element u∈ A×∪{0} such that a|(b−u).
Conclude that Z[T ]/〈T 2−T +5〉 is not a Euclidean domain, by considering the
cases a = 2 and a = T .

(3) Show that N is a Dedekind-Hasse norm, i.e. for all nonzero x,y∈Z[T ]/〈T 2−T +
5〉, there are p,q,r ∈ Z[T ]/〈T 2−T +5〉 such that px = qy+ r and N(r)< N(y).
Conclude that Z[T ]/〈T 2−T +5〉 is a principal ideal domain.

Exercise 1.22 (Universal property of Z). Show that the ring Z satisfies the following
universal property: for every ring A, there is a unique ring homomorphism f : Z→ A.
Use this and the universal property of the quotient map Z→ Z/nZ to show that for a
ring A whose underlying additive group (A,+) is isomorphic to (Z/nZ,+) (as a group),
there is a unique ring isomorphism Z/nZ→ A.

Remark: We say that Z is an initial object in the category of rings.

Exercise 1.23. Let A be a ring and I an ideal of A. Show that I is contained in a maximal
ideal of A.

Hint: This is a consequence of Zorn’s Lemma.

Exercise 1.24. Let A be a principal ideal domain and a ∈ A. Show that 〈a〉 is a maximal
ideal if and only if a is irreducible.

Exercise 1.25. Let A be an integral domain and a,b ∈ A. Show that 〈a〉 = 〈b〉 if and
only if a b. Is this still true for an arbitrary ring?

Exercise 1.26. Let Z[
√
−5] be the set of complex numbers of the form z = a+b

√
−5

with a,b ∈ Z and
√
−5 = i

√
5.

(1) Show that Z[
√
−5] is a subring of C.

(2) Show that the association a+b
√
−5 7→ a2 +5b2 defines a map N : Z[

√
−5]→ Z

with N(zz′) = N(z)N(z′) and N(1) = 1.
Remark: N(z) is the square of the usual absolute value of the complex number z.

(3) Conclude that z ∈ Z[
√
−5]× if and only if N(z) ∈ Z×. Determine Z[

√
−5]×.

(4) Show that 2, 3, (1+
√
−5) and (1−

√
−5) are irreducible, but not prime.

(5) Show that 6 and 2+2
√
−5 do not have a greatest common divisor.

Exercise 1.27. (1) Determine all units, prime elements and irreducible elements of
Z/6Z.

(2) Let R[T1,T2] = (R[T1])[T2] be the polynomial ring over R in T1 and T2 and I
the ideal generated by T 2

1 +T 2
2 . Is the class T 1 = T1 + I a prime element in the

quotient ring R[T1,T2]/I? Is T 1 irreducible?

Exercise 1.28. Let A be a unique factorization domain.

(1) Show that every prime ideal of A is generated by a set of prime elements.
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(2) Find an example of a unique factorization domain A and prime elements p1, . . . , pn
of A such that I = (p1, . . . , pn) is not a prime ideal.

(3) Show that the ideal I = (2,1+
√
−5) in Z[

√
−5] is prime and that it does not

contain any prime element.

Exercise 1.29. Let A be an integral domain and (a) a nonzero principal ideal of A.
A factorization of (a) into principal prime ideals is an equality of the form (a) =
∏n

i=1(pi) where (pi) are principal prime ideals of A.

(1) Show that a factorization in principal prime ideals is unique, i.e. if (a) = ∏n
i=1(pi)

and (a) = ∏m
j=1(q j) are two such factorizations, then there exists a bijection

σ : {1, . . . ,n}→ {1, . . . ,m} such that (pi) = (qσ(i)) for all i = 1, . . . ,n.

(2) Show that A is a unique factorization domain if and only if every principal ideal
of A has a factorization into principal prime ideals.

Exercise 1.30. Let A be a ring. The spectrum of A is the set SpecA of all prime ideals
of A. A principal open subset of SpecA is a subset of the form

Ua = UA,a = {p ∈ SpecA |a /∈ p}

with a ∈ A.

(1) Show that U0 =∅, U1 = SpecA and Ua∩Ub =Uab for all a,b ∈ A.
Remark: This shows that the principal open subsets of SpecA form a basis for a
topology on SpecA, which is called the Zariski topology.

(2) Let f : A→ B be a ring homomorphism. By Exercise 1.13, the association
p 7→ f−1(p) defines a map ϕ : SpecB→ SpecA. Show that ϕ−1(UA,a) =UB, f (a)
for every a ∈ A.
Remark: This shows that the map ϕ : SpecB→ SpecA is a continuous map.

(3) Describe the spectrum of the following rings: a field K, the integers Z, and their
quotient Z/6Z. Describe the maps of spectra that are induced by the inclusion
Z→Q and the surjection Z→ Z/6Z.

∗Exercise 1.31. Study the map ϕ : SpecZ[i]→ SpecZ of spectra that is induced by the
inclusion Z→ Z[i] of Z into the Gaussian integers.

(1) Show that if ϕ(q) = 〈p〉 for a prime number p ∈ Z, then q is a maximal ideal of
Z[i] that is generated by a single prime element of Z[i].

(2) Show that the fibres ϕ−1(p) have either one or two elements for each fibre, and
show that both cases occur.

Remark: If ϕ−1(p) has two elements, then we say that p splits in the extension
Z→ Z[i]. Hint: A useful tool is the Euclidean norm N(a+ ib) = a2 +b2, which
has some convenient properties (e.g. it is multiplicative and its fibres are finite).
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(3) Show that if p= 〈p〉 for some prime number p ∈ Z and if ϕ−1(p) = {q} consists
of only one prime ideal q, then Z[i]/q is a field with p or p2 elements. Show that
both cases occur.

Remark: If Z[i]/q has p2 elements, then we say that p is inert in the extension
Z→ Z[i].

(4) Show that if p= 〈p〉 for some prime number p ∈ Z and if ϕ−1(p) = {q} such that
Z[i]/q' Z/p, then q is generated by an element q ∈ Z[i] such that q2 = p.

Remark: In this case, we say that p ramifies in the extension Z→ Z[i].

Exercise 1.32. Proof Lemma 1.8.4.

Exercise 1.33. Proof Lemma 1.9.2.

Exercise 1.34. Let A be a ring and S a multiplicative subset. Show the following
assertions.

(1) The localization map A→ S−1A is injective if and only if for every a ∈ S, the
multiplication ma : A→ A by a is an injective map.

(2) If A is an integral domain, a unique factorization domain, a principal ideal domain,
a Euclidean domain or a field and 0 /∈ S, then S−1A is so, too.

(3) Let A = A1×A2 and h = (1,0). Show that the association (a,b)
hi 7→ (a,0) defines a

ring isomorphism A[h−1]' A1.

(4) Find an example of a local ring A and a multiplicative subset S with 0 /∈ S such
that S−1A is not local.

Exercise 1.35. Let A be a ring.

(1) Show that A[T1,T2]' (A[T1])[T2].

(2) Let h ∈ A. Show that A[h−1]' A[T ]/〈hT −1〉.

Exercise 1.36. Let A be a ring, S a multiplicative subset of A and ιS : A→ S−1A the
localization map. Show the following.

(1) Given an ideal I of A, show that the ideal of S−1A generated by ιS(I) equals

I ·S−1A =
{a

s ∈ S−1A
∣∣a ∈ I,s ∈ S

}
,

and that I ·S−1A is prime if I is prime and does not intersect S.

(2) Show that for every prime ideal q of S−1A, the inverse image ι−1
S (q) is a prime

ideal of A that does not intersect S.

(3) Show that this defines mutually inverse bijections
{

prime ideals p of A with p∩S =∅
}
←→

{
prime ideals of S−1A

}

p 7−→ p ·S−1A
ι−1
S (q) 7−→ q
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Exercise 1.37. Let A be a ring and S a multiplicative subset. Show that the localiza-
tion map ιS : A→ S−1A defines an injection ϕ : SpecA[h−1]→ SpecA that satisfies
ϕ(UA[h−1], a

s
) =UA,ah for every a ∈ A and s = hi with i> 0.

Remark: This shows that ϕ : Spec(A[h−1])→ SpecA is an open topological embedding
with image Uh.

Exercise 1.38. Let A be a unique factorization domain. Show that the set G of principal
fractional ideals is an abelian group with respect to their product. What is the neutral
element of this group? What is the inverse of 〈a〉A where a ∈ K×? Show that the
association a 7→ 〈a〉A define a surjective group homomorphism K×→ G with kernel A×.

Exercise 1.39. Let K be a field and f ∈ K[T ] a polynomial.

(1) Show for deg f = 2 and deg f = 3 that f is irreducible in K[T ] if and only if f
does not have a root in K.

(2) Find a field K and a polynomial f ∈ K[T ] of degree 4 that is not irreducible and
does not have a root in K.

(3) Show that there exists a field extension L/K such that f factorizes in L[T ] as

f = u
n

∏
i=1

(T −ai)

with u,a1, . . . ,an ∈ L.

Exercise 1.40. Let A be a ring and let nZ be the kernel of the unique ring homomorphism
Z→ A where n> 0. The number char A = n is called the characteristic of A.

(1) Show that if n is positive, then n is the smallest positive integer such that

n ·1 = 1+ · · ·+1︸ ︷︷ ︸
n−times

= 0.

If n = 0, then k ·1 6= 0 for any k > 0.

(2) Show that n is zero or a prime number if A is an integral domain.

(3) Let L/K be a field extension. Show that K and L have the same characteristic.

(4) Let K be a field of characteristic 0. Show that there is a unique ring homomorphism
Q→ K.

(5) Let p be a prime number and Fp = Z/pZ the field with p elements. Let K be a
field of characteristic p. Show that there is a unique ring homomorphism Fp→ K.

(6) Give an example of a ring homomorphism A→ B where A and B have different
characteristics.

Remark: The image of the unique homomorphism Q→ K (if char K = 0) or Fp→ K
(if char K = p > 0) is called the prime field of K.
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Exercise 1.41. Let F2 = Z/2Z be the field with two elements 0 and 1.

(1) Show that f = T 2 +T +1 is an irreducible polynomial in F2[T ].

(2) Show that F4 = F2[T ]/( f ) is a field with four elements.

(3) Show that F×4 is a cyclic group with 3 elements.

(4) Show that T 4−T = ∏a∈F4(T −a) (as a polynomial in F4[T ]).

(5) Find a factorization of T 4−T in F2[T ].

Exercise 1.42. Let G be an abelian group with n elements. We define the exponent of
G as the smallest positive integer m such that gm = e for all g ∈ G.

(1) Show that G is cyclic if and only if its exponent is n.

(2) Let K be a field and U a finite subgroup of order n of the multiplicative group K×

of K. Show that U is cyclic.
Hint: If m is the exponent of U , then every element of U is a zero of T m−1.

Exercise 1.43. (1) Show that all irreducible polynomials in R[T ] are of degree 1 or 2.

(2) Define two complex numbers z and z′ as equivalent if z′ = z or z′ = z, the complex
conjugate of z. Denote the corresponding equivalence relation by ∼ and the class
of z in the quotient set C/∼ by [z]. Show that the map

C/∼ −→ {maximal ideals of R[T ]}
[z] 7−→ ( ∏

z′∈[z]
(T − z′))

is a bijection.

(3) Describe SpecC[T ], assuming the fundamental theorem of algebra (Exercise
1.44).

(4) Make a drawing of SpecR[T ] and of the map f ∗ : SpecC[T ]→ SpecR[T ] that is
induced by the inclusion f : R[T ]→ C[T ].

∗Exercise 1.44. Prove the fundamental theorem of algebra: given a polynomial f ∈
C[T ] of positive degree, then there exists a z ∈ C such that f (z) = 0.

Exercise 1.45. Let A be a principal ideal domain with only one prime element p (up to
associates).

(1) Show that every element a ∈ A−{0} can be written in the form a = upn for
uniquely determined u ∈ A× and n> 0.

(2) Show that A has a unique maximal ideal m.

(3) Show that every other ideal of A is either equal to (0) or (1) or of the form
mi =m · · ·m︸ ︷︷ ︸

i-times

for some i> 1.

(4) The intersection of all mi is
⋂

i∈Nm
i = {0}.
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(5) Show that A is a Euclidean ring.

(6) Give an example of a ring with these properties (including a proof).

Remark: A ing with these properties is called a discrete valuation ring.





Chapter 2

Categories

2.1 Classes
Category theory relies on the notion of a class, which is a collection of “mathematical
objects” that might be “too large” to be a set. But given a class C, we can say for every
mathematical object A whether A ∈C or A /∈C.

The reason to introduce classes beyond sets is Russell’s paradox:

Let C be the class of all sets A with A /∈ A. If C was a set, then C ∈C if and
only if C /∈C, which is absurd.

It would lead, in particular, to a contradictory concept if we would attempt to consider
the “set of all sets”, which cannot exist for the alluded paradox—provided we assume
axioms for set theory that prevent that a set can contain itself.

We avoid a digression into foundations of set theory and hope that the reader finds
the description of a class as a collection of mathematical objects sufficiently intuitive to
continue reading.

2.2 Categories
Definition 2.2.1. A category C consists of a class Ob(C) of objects, a morphism set
HomC(A,B) for every pair of objects A,B ∈ Ob(C) and a composition law

◦ : HomC(A,B)×HomC(B,C) −→ HomC(A,C)
(α : A→ B,β : B→C) 7−→ β ◦α : A→C

for any three objects A,B,C ∈ Ob(C) such that the following axioms hold:

(1) for every object A ∈ Ob(C), there is a morphism idA : A→ A such that for all
objects B,C ∈Ob(C) and all morphisms α : A→ B in HomC(A,B) and γ : C→ A
in HomC(C,A), we have α◦ idA = α and idA ◦γ = γ; (identity)

(2) for all objects A,B,C,D ∈ Ob(C) and all morphisms α : A→ B in HomC(A,B),
β : B→C in HomC(B,C) and γ : C→ D in HomC(C,D), we have γ ◦ (β ◦α) =
(γ ◦β)◦α. (associativity)

59
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Notation. We say that A is an object in C if A∈Ob(C) and that α : A→ B is a morphism
in C if α ∈Hom(A,B). We write Hom(A,B) for HomC(A,B) if the category C is clear
from the context.

The morphism idA : A→ A from axiom (1) is called the identity morphism of A.
Identity morphisms are uniquely determined by axiom (1): if ι : A→ A is a morphism
such that α◦ ι= α for all morphisms α : A→ B, then ι= idA ◦ ι= idA.

Example 2.2.2. We are already familiar with many examples of categories, such as some
of the following. In most of these examples, the objects are sets with some additional
structure, morphisms are maps with some additional properties and the composition law
is the usual composition of maps. Therefore the identity map idA : A→ A that maps
a ∈ A to idA(a) = a satisfies (1). The associativity law (2) follows from an elementwise
evaluation of morphisms α : A→ B, β : B→C and γ : C→ D in elements a ∈ A:

γ ◦ (β ◦α)(a) = γ
(
β ◦α(a)

)
= γ

(
β
(
α(a)

))
= γ ◦β

(
α(a)

)
= (γ ◦β)◦α(a).

This reasons that the axioms (1) and (2) are satisfied in most of the following examples.
The other cases are left as an exercise.

(0) The trivial category C: Ob(C) = {A} and Hom(A,A) = {idA : A→ A}, with the
tautological composition idA ◦ idA = idA.

(1) The category Sets of sets: Ob(Sets) is the class of all sets; Hom(A,B) consist of
all maps α : A→ B for every pair of sets A and B; the composition law ◦ is the
usual composition of maps.

(2) The category Ab of abelian groups: Ob(Ab) is the class of all abelian groups;
Hom(A,B) consists of all group homomorphisms α : A→ B for every pair of
abelian groups A and B; the composition law ◦ is the usual composition of group
homomorphisms.

(3) The category Rings of rings: Ob(Rings) is the class of all rings; Hom(A,B)
consists of all ring homomorphisms α : A→ B for every pair of rings A and B; the
composition law ◦ is the usual composition of ring homomorphisms.

(4) The category Fields of fields: Ob(Fields) is the class of all fields; Hom(A,B)
consists of all ring homomorphisms α : A→ B for every pair of fields A and B;
the composition law ◦ is the usual composition of ring homomorphisms.

(5) The category Top of topological spaces: Ob(Top) is the class of all topological
spaces; Hom(A,B) consists of all continuous maps α : A→ B for every pair of
topological spaces A and B; the composition law ◦ is the usual composition of
(continuous) maps; see section A.2 for definitions.

(6) The category VectK of vector spaces over a field K: Ob(VectK) is the class of
all K-vector spaces; Hom(A,B) consists of all K-linear maps α : A→ B for every
pair of K-vector spaces A and B; the composition law ◦ is the usual composition
of K-linear maps.
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(7) The category AlgA of algebra over a ring A: Ob(AlgA) is the class of all rings
B together with a ring homomorphism ιB : A→ B called the structure map of B;
Hom(B,C) consists of all ring homomorphisms β : B→C such that ιC = β ◦ιB for
every pair of A-algebras B and C (where we suppress the structure maps ιB : A→ B
and ιC : A→C from the notation); the composition law ◦ is the usual composition
of ring homomorphisms.

(8) The opposite category Cop of a category C: Ob(Cop)=Ob(C) and HomCop(B,A)=
HomC(A,B) for all objects A and B of C where we denote the morphism in Cop

that corresponds to a morphism α : A→ B in C by αop : B→ A. The composition
is defined by αop ◦βop = (β ◦α)op for α : A→ B and β : B→C.

(9) One can visualize finite categories as graphs, for example:

A B

C D

idA
α

γ =β◦αδ◦γ

idB

β

idC
δ

idD

(10) Categories of correspondences: a simple instance is the category C for which
Ob(C) is the class of all sets and Hom(A,B) is the collection of all subsets S of
A×B, which we call relations or correspondences, and write αS : A→ B for a
subset S of A×B. Given two correspondences αS : A→ B and αT : B→C, we
define the composition αT ◦αS : A→C as the subset

{
(a,c) ∈ A×C

∣∣(a,b) ∈ S and (b,c) ∈ T for some b ∈ B
}

of A×C. We leave it as an exercise to verify that the subset {(a,a) | a∈A} of A×A
is the identity morphism idA : A→ A and that the composition of correspondences
is associative.

2.3 Monomorphisms, epimorphisms and
isomorphisms

We have seen already examples of categories whose morphisms are not maps. In so far,
it does not make sense to ask whether morphisms in an abstract category are injective,
surjective or bijective. There is, however, a “categorical” characterization of injective,
surjective and bijective maps, seen as morphisms in Sets, which is as follows. The
precise relation is exhibited in Lemma 2.3.3.

Definition 2.3.1. Let C be a category and α : A→ B a morphism in C. Then f is

• a monomorphism if α◦β = α◦γ implies β = γ for all β : C→ A and γ : C→ A;

• an epimorphism if β ◦α= γ ◦α implies β = γ for all β : B→C and γ : B→C;
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• an isomorphism if there is a morphism β : B→ A such that β ◦α = idA and
α◦β = idB; we call β the inverse of α and denote it by α−1 if it exists.

Lemma 2.3.2. Let C be a category.

(1) Identity morphisms are isomorphisms.

(2) The inverse of an isomorphism is uniquely determined.

(3) Every isomorphism is both a monomorphism and an epimorphism.

Proof. Since idA ◦ idA = idA, the identity morphism idA is an isomorphism with inverse
idA. Thus (1).

Let α : A→B be an isomorphism with inverse α−1 : B→A and β : B→A a morphism
such that β ◦α = idA and α ◦β = idB. Then β = idA ◦β = α−1 ◦α ◦β = α−1, which
shows (2).

Consider an isomorphism α : A→ B and morphisms β : C→ A and γ : C→ A. Then
β=α−1◦α◦β=α−1◦α◦γ= γ, which shows that α is a monomorphism. Similarly, we
have for morphisms β′ : B→C and γ′ : B→C that β′ = β′ ◦α◦α−1 = γ′ ◦α◦α−1 = γ′,
which shows that α is an epimorphism. Thus (3), which completes the proof.

Lemma 2.3.3. Let α : A→ B be a map between sets. Considered as a morphism in
Sets,

(1) α is a monomorphism if and only if α is injective;

(2) α is an epimorphism if and only if α is surjective;

(3) α is an isomorphism if and only if α is bijective.

Proof. We begin with (1). Assume α is a monomorphism and consider a,b ∈ A with
α(a) = α(b). We define two maps β : {c} → A and γ : {c} → A with β(c) = a and
γ(c) = b. Since α◦β(c) = α(a) = α(b) = α◦β(c), we conclude that β = γ since α is
a monomorphism. Thus a = b, which shows that α is injective.

Conversely assume that α is injective and consider two maps β : C→A and γ : C→A
with α◦β = α◦γ, i.e. α

(
β(c)

)
= α

(
γ(c)

)
for all c∈C. Since f is injective, this implies

that β(c) = γ(c) for all c ∈C, i.e. β = γ. Thus α is a monomorphism, which establishes
(1).

We continue with (2). Assume α is an epimorphism and consider b ∈ B. Let C =
B∪{b′} for some element b′ /∈B. We define β : B→C and γ : B→C by β(a)= γ(a)= a
for all a ∈ B−{b}, β(b) = b and γ(b) = b′. Then β 6= γ and thus α◦β 6= α◦γ since α
is an epimorphism. Thus b must be in the image of α, which shows that α is surjective.

Conversely, assume that α is surjective and consider β : B→C and γ : B→C with
β ◦α= γ ◦α, i.e. β

(
α(a)

)
= γ
(
α(a)

)
for all a ∈ A. Since α is surjective, every b ∈ B is

of the form b = α(a) and thus β(b) = γ(b) for all b ∈ B, i.e. β = γ. This shows that α
is an epimorphism, which establishes (2).

We continue with (3). Assume that α is an isomorphism. By Lemma 2.3.2, α is both
a monomorphism and an epimorphism. By (1) and (2), α is both injective and surjective,
and therefore bijective.
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Conversely assume that α is bijective. We define β : B→ A by β(α(a)) = a which
is well-defined since α is bijective. Then we have for all a ∈ A and b = α(a) that
β ◦α(a) = β(α(a)) = a and α◦β(b) = α

(
β(b)

)
= b. Thus β is the inverse of α, which

shows that α is an isomorphism.

Remark. We conclude that in Sets, every morphism that is both a monomorphism and
an epimorphism, is an isomorphism. This is not true for all categories. For example,
localizations of rings are epimorphisms in Rings, but not surjective in general. More
specifically, the inclusion Z→Q is both a monomorphism and an epimorphism, but not
an isomorphism, cf. Exercise 2.1.

The characterization of monomorphisms as injections, epimorphisms as surjections
and isomorphisms as bijections holds in the categories VectK of K-vector spaces and Ab
of abelian groups. In Rings monomorphisms coincide with injections, isomorphisms
coincide with bijections, and surjections are epimorphisms, but not every epimorphism
is surjective.

2.4 Initial and terminal objects, products and
coproducts

Definition 2.4.1. Let C be a category. An object A in C is initial if for every object B in
C, there is a unique morphism A→ B. An object A in C is terminal if for every object B
in C, there is a unique morphism B→ A.

Remark. Initial and terminal objects do not have to exist in a category, but if they do,
then they are unique up to a unique isomorphism. Indeed, if A and B are both initial or
both terminal objects, then there are unique morphisms α : A→ B and β : B→ A whose
compositions β ◦α and α◦β must be equal to the unique morphisms A→ A and B→ B,
which are the respective identities of A and B. Thus α is the unique isomorphism from
A to B.

Example 2.4.2. We list initial and terminal objects for some categories.

(1) An initial object in Sets is the empty set ∅. A terminal object in Sets is a set
{a} with one element a. This makes clear that the terminal object is not general
unique, but only unique up to unique isomorphism.

(2) Let K be a field. The trivial K-vector space {0} is both initial and terminal in
VectK . Similarly, the trivial group {e} is both initial and terminal in Ab.

(3) An initial object in Rings is the ring of integers Z, cf. Exercise 1.22. A terminal
object in Rings is the trivial ring {0}.

(4) The category of fields has neither initial nor terminal objects since there are no
morphisms between fields of different characteristics.

Definition 2.4.3. Let C be a category and {Ai}i∈I a family of objects in C. A product of
{Ai} is an object ∏i∈I Ai in C together with a family {π j : ∏Ai→ A j} j∈I of morphisms
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that satisfies the following universal property: for every object B and for every family of
morphisms {α j : B→ A j} j∈I , there exists a unique morphism α̂ : B→∏Ai such that
α j = π j ◦ α̂ for all j ∈ I, i.e. the diagram

B ∏Ai

A j

α̂

α j
π j

�

commutes for every j ∈ I.
A coproduct of {Ai} is an object ∏

i∈I Ai in C together with a family {ι j : A j →∏Ai} j∈I of morphisms that satisfies the following universal property: for every object B
and for every family of morphisms {α j : A j→ B} j∈I , there exists a unique morphism
α̂ : ∏Ai→ B such that α j = α̂◦ ι j for all j ∈ I, i.e. the diagram

∐
Ai B

A j

α̂

�ι j α j

commutes for every j ∈ I.

Notation. The morphisms π j : ∏Ai→ A j are called the canonical projections of the
product ∏Ai and the morphisms ι j : A j → ∏Ai are called the canonical inclusions
of the coproduct ∏Ai. Note that, in spite of its name, the canonical projections are
in general neither surjective (as far as this makes sense) nor epimorphisms, and sim-
ilarly, the canonical injections are neither injective (as far as this makes sense) nor
monomorphisms.

Remark. Note that products and coproducts are unique up to a unique isomorphism
that commutes with the canonical projections and inclusions, respectively. We verify
this claim for products in the following, and leave the analogous case as an exercise.

Given two objects Π and Π′ together with families {π j : Π→ A j} j∈I and {π′j : Π′→
A j} j∈I that satisfy each the universal property of the product, then the π′j induce a
unique morphism π̂ : Π→ Π′ such that π j = π′j ◦ π̂ for all j ∈ I, and the π j induce a
unique morphism π̂′ : Π′→Π such that π′j = π j ◦ π̂′ for all j ∈ I. Thus π j = π j ◦ π̂′ ◦ π̂
and π′j = π′j ◦ π̂ ◦ π̂′ for all j ∈ I. Since idΠ : Π→ Π is the unique morphism with
π j = π j ◦ idΠ, we conclude that π̂′ ◦ π̂ = idΠ, and similarly, π̂ ◦ π̂′ = idΠ′ , which verifies
our claim. We illustrate these morphisms in the following diagram:

Π Π′

A j

π̂

π j

idΠ
π̂′

π′j

idΠ′
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Example 2.4.4. We describe for the constructions of products and coproducts for some
categories.

(1) Let {Ai}i∈I be a family of sets. Its product in Sets is the Cartesian product ∏Ai
together with the coordinate projections π j : ∏Ai → A j. Its coproduct is the
disjoint union ∏

i∈I
Ai =

{
(i,a)

∣∣ i ∈ I and a ∈ Ai
}

together with the inclusions ι j : A j→∏Ai that are defined by ι j(a) = ( j,a).

(2) Let K be a field and {Ai}i∈I a family of K-vector spaces. Its product in VectK is
the Cartesian product ∏Ai together with the coordinate projections π j : ∏Ai→ A j.
Its coproduct is the direct sum

⊕

i∈I

Ai =
{
(ai)i∈I ∈∏

i∈I
Ai

∣∣∣ai = 0 for all but finitely many i ∈ I
}

together with the coordinate inclusions ι j : A j→
⊕

Ai, i.e. a ∈ A j is sent to the
element (ai) ∈

⊕
Ai with ai = a for i = j and ai = 0 for i 6= j. Note that if I is

finite, then
⊕

Ai = ∏Ai.

(3) The product and coproduct of a family of abelian groups {Ai}i∈I in Ab is similarly
constructed: its product is the Cartesian product ∏Ai together with the coordinate
projections π j : ∏Ai→ A j and its coproduct is the direct sum

⊕
Ai together with

the coordinate inclusions ι j : A j→
⊕

Ai.

(4) Let {Ai} be a family of rings. Its product in Rings is the Cartesian product ∏Ai
together with the coordinate projections π j : ∏Ai→ A j. Its product is the tensor
product

⊗
Ai together with the canonical inclusions ι j : A j→

⊗
Ai, cf. Corollary

3.3.7.

We summarize Remark 2.3 and Examples 2.4.2 and 2.4.4 in Table 2.1.

Category mono. epi. isom. initial terminal product coproduct
Sets inj. surj. bij. ∅ {a} ∏Ai

∏Ai
VectK inj. surj. bij. {0} {0} ∏Ai

⊕
Ai

Ab inj. surj. bij. {0} {0} ∏Ai
⊕

Ai
Rings inj. ? bij. Z {0} ∏Ai

⊗
Ai

Table 2.1: Characterizations of certain morphisms and objects for some categories

2.5 Functors
A functor is an association between categories, similar to morphisms between objects in
a category itself. Functors allow to connect different categories and to study properties
of a category in its objects in terms of other categories. There are two fundamental
variants of functors: those that preserve the direction of morphisms (covariant functors)
and those the reverse the direction (contravariant functors).
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Definition 2.5.1. Let C and D be categories. A covariant functor F : C→D consists
of an assignment of an object F(A) in D to every object A in C and a map

HomC(A,B) −→ HomD

(
F(A),F(B)

)

α : A→ B 7−→ F(α) : F(A)→ F(B)

for every pair of objects A and B in C such that F(idA) = idF(A) for all objects A in C

and such that F(β ◦α) = F(β)◦F(α) for all morphisms α : A→ B and β : B→C in C.
A contravariant functor F : C→D consists of an assignment of an object F(A) in

D to every object A in C and a map

HomC(A,B) −→ HomD

(
F(B),F(A)

)

α : A→ B 7−→ F(α) : F(B)→ F(A)

for every pair of objects A and B in C such that F(idA) = idF(A) for all objects A in C

and such that F(β ◦α) = F(α)◦F(β) for all morphisms α : A→ B and β : B→C in C.

Example 2.5.2. We provide a list of examples of functors.

(0) Let C be a category. The identity functor idC : C→ C is the covariant functor
with idC(A) = A and idC(α) = α for all objects A and morphisms α in C. There is
a contravariant functor C→ Cop to the opposite category of C that is the identity
on objects and that maps a morphism α : A→ B to its opposite morphism αop :
Bop→ Aop.

(1) Taking the unit groups of a ring defines a functor (−)× : Rings→ Ab that assigns
to each ring A its unit group A× and that maps a ring homomorphism α : A→ B
to its restriction α× : A×→ B×, which is a group homomorphism.

(2) Let K be a field. Passing to the dual K-vector space defines a contravariant functor
(−)∗ : VectK → VectK that assigns to a K-vector space A its dual space A∗ =
HomK(A,K) and that maps a K-linear map α : A→ B to its dual (or transpose)
α∗ : B∗→ A∗ that sends a K-linear map β : B→ K to the composition α∗(β) =
β ◦α : A→ K.

(3) For a category C whose objects are sets with additional structure, whose mor-
phisms are maps that satisfying certain conditions and whose composition law
is the composition of maps, there is a forgetful functor F : C→ Sets that is the
covariant functor that assigns to each object A in C its underlying set A and to its
morphism α : A→ B in C the underlying map α : A→ B.

This applies, in particular, to the categories VectK , Ab and Rings. For example,
the forgetful functor F : Ab→ Sets assigns to each abelian group G its underlying
set G = {a ∈ G} and to each group homomorphism α : G→ H the underlying
map a 7→ α(a) from G to H.

(4) There are also forgetful functors into other categories. For instance for every
ring A, there is a forgetful functor F : AlgA→ Rings that sends an A-algebra B
with structure map ιB : A→ B to the ring B and an algebra morphism β : B→C
to itself, forgetting that it commutes with the structure maps of B and C. Note that
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since for every ring B, there is a unique morphism Z→ B, the forgetful functor
F : AlgZ→ Rings identifies the two categories.

(5) For many categories C, there are free functors F : Sets→ C. We explain this in
the examples of Ab and AlgA.

The free functor F : Sets→ Ab is the covariant functor that assigns to each set
A the free abelian group F(A) =

⊕
a∈AZ and to each map α : A→ B the group

homomorphism F(α) : F(A)→ F(B) that sends an elements (na) ∈
⊕

a∈AZ to
(mb) ∈

⊕
b∈BZ with mb = ∑α(a)=b na, which is a finite sum since na = 0 for

almost all a ∈ A.

The free functor F : Sets→ AlgA is the covariant functor that assigns to each set
B the polynomial ring A[Tb|b ∈ B] together with the canonical inclusion ιA : A→
A[Tb|b ∈ B] as the structure map, and that assigns to each map α : B→C the ring
homomorphism α̂ : A[Tb|b ∈ B]→ A[Tc|c ∈C] that extends idA : A→ A and that
maps Tb to Tα(b) for every b ∈ B.

(6) Let C be a category and A an object in C. Then Hom(A,−) : C→ Sets is the
covariant functor that assigns to an object B in C the set Hom(A,B) of mor-
phisms α : A → B in C and that assigns to a morphism β : B → C the map
β∗ : Hom(A,B)→ Hom(A,C) that sends α : A→ B to β∗(α) = β ◦α : A→ C.
Similarly, Hom(−,A) : C→ Sets is the contravariant functor that assigns to an
object B in C the set Hom(B,A) of morphisms α : B→ A in C and that assigns to a
morphism β : B→C the map β∗ : Hom(C,A)→Hom(B,A) that sends α : C→ A
to β∗(α) = α◦β : B→ A.

2.6 Adjoint functors
Definition 2.6.1. Let C and D be categories and F : C→D and G : D→ C covariant
functors. Then F is left adjoint to G and G is right adjoint to F, which we denote as
F a G, if there is a bijection

ΨA,B : HomC

(
A,G(B)

)
−→ HomD

(
F(A),B

)

for every pair of an object A in C and an object B in D such that the diagram

γ HomC

(
A′,G(B)

)
HomD

(
F(A′),B

)
δ

G(β)◦γ ◦α HomC

(
A,G(B′)

)
HomD

(
F(A),B′

)
β ◦ δ ◦F(α)

∈
ΨA′,B ∈

∈
ΨA,B′ ∈

commutes for every pair of a morphism α : A→ A′ in C and a morphism β : B→ B′ in
D.

Example 2.6.2. We have already seen some examples of adjoint functors, which are the
forgetful and free functors from Example 2.5.2. We explain this in detail in the following
case.
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Let A be a ring and G : AlgA→ Sets the forgetful functor from Example 2.5.2.(4),
which sends an A-algebra B to its underlying set B and a homomorphism α : B→C of
A-algebras to itself, considered as a map α : B→C between the respective underlying
sets. Let F : Sets→ AlgA be the free functor from Example 2.5.2.(5), which sends a
set B to the polynomial ring A[Tb|b ∈ B] and a map α : B→C to the homomorphism
ᾱ : A[Tb|b ∈ B]→ A[Tc|c ∈C] that maps Tb to Tα(b).

Let B be a set, C an A-algebra and α : B→ C a map. The universal property of
polynomial rings (Proposition 1.9.3) implies that there is a unique A-linear ring homo-
morphism α̂ : A[Tb|b ∈ B]→C that sends Tb to α(b). This means that the association
α 7→ α̂ defines a bijection

ΨB,C : HomSets
(
B,C

)
−→ HomA

(
A[Tb|b ∈ B],C

)

for every set B and every A-algebra C.
Given a map β : B→ B′ and an A-linear ring homomorphism γ : C→C′, we aim to

show that the diagram

HomSets
(
B′,C

)
HomA

(
A[Tb|b ∈ B′],C

)

HomSets
(
B,C′

)
HomA

(
A[Tb|b ∈ B],C′

)

ΨB′,C

γ◦−◦β γ◦−◦β̄
ΨB,C′

commutes. Given a map δ : B′→ C, both ΨB,C′(γ ◦ δ ◦β) and γ ◦ΨB′,C(δ) ◦ β̄ are A-
linear homomorphisms A[Tb|b ∈ B]→C′, which are determined by the images of the
indeterminates Tb. We have

(
ΨB,C′(γ ◦ δ ◦β)

)
(Tb) = γ

(
δ
(
β(b)

))

= γ
(
δ̂(Tβ(b))

)
=
(
γ ◦ΨB′,C(δ)

)
(Tβ(b)) =

(
γ ◦ΨB′,C(δ)◦ β̄

)
(Tb),

which shows that both maps are equal and that the diagram in question commutes. Thus
the free functor F : Sets→ AlgA is left adjoint to the forgetful functor G : AlgA→ Sets.

2.7 Exercises
Exercise 2.1. Let K be a field.

(1) Show that in the categories Ab, VectK and Rings, a morphism is an isomorphism
if and only if it is a bijective map.

(2) Show that in the categories Ab, VectK and Rings, a morphism is a monomorphism
if and only if it is an injective map.

(3) Show that in the categories Ab and VectK , a morphism is an epimorphism if and
only if it is a surjective map.
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(4) Let A be a ring and S a multiplicative subset. Show that the localization map
ιS : A→ S−1A is an epimorphism in Rings. Conclude that the inclusion Z→Q is
both a monomorphism and an epimorphisms, but not isomorphisms.

Exercise 2.2. (1) Let F : C→D be a functor and α : A→ B an isomorphism in C.
Show that F(α) is an isomorphism in D.

(2) Give an example of a functor F : C→D and an epimorphism α in C such that
F(α) is not an epimorphism.

(3) Give an example of a functor F : C→D and a monomorphism α in C such that
F(α) is not a monomorphism.

Exercise 2.3. Let C be a category and {Ai}i∈I a family of objects in C. Assume that C
has a product ∏i∈I Ai and a coproduct ∏

i∈I Ai. Let B be another object of C.

(1) Show that there is a bijection HomC

(
B,∏i∈I Ai

)
−→∏i∈I HomC(B,Ai).

(2) Show that there is a bijection HomC (
∏

i∈I Ai,B
)
−→∏i∈I HomC(Ai,B).

Exercise 2.4. Let C be a category and α : A→ B a morphism in C. A (categorical)
image of α is an object im(α) in C together with a morphism π : A→ im(α) and a
monomorphism ι : im(α)→ B such that α= ι◦π that satisfies the following universal
property: for every object C, morphism π′ : A→C and monomorphism ι′ : C→ B such
that α = ι′ ◦ π′ there is a unique morphism β : im(α)→ C such that π′ = β ◦ π and
ι= ι′ ◦β.

(1) Draw a diagram taking all the above objects and morphisms into consideration.

(2) Assume that the image im(α) of α exits. Show that if C together with π′ : A→C
and ι′ : C→ B is an image of α, then there is a unique isomorphism β : im(α)→C
such thatπ′ = β ◦π and ι= ι′ ◦β.

(3) Let α : A→ B be a morphism in Sets. Consider the set

im(α) = {b ∈ B |b = α(a) for some a ∈ A},

and the maps π : A→ im(α) with π(a) = α(a) and ι : im(α)→ B with ι(b) = b.
Show that im(α) together with π and ι is a categorical image of α in Sets.

(4) Show that the analogous statements to (3) hold for Ab, VectK and Rings.

Exercise 2.5. Let C be a category. A zero object of C is an object 0 that is both initial
and terminal. If C has a zero object 0, then we call for any two objects A and B of C, the
unique morphism 0 : A→ 0→ B from A to B the zero morphism.

(1) Show that the categories Ab and VectK have a zero object. Show that in both
categories a morphism α : A→ B is a zero morphism if and only if α(a) = 0 for
all a ∈ A (where 0 stays for the zero element of B).

(2) Show that the categories Sets and Rings do not have a zero object.

Assume that C has a zero object 0.
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(3) Show that the composition of a morphism with a zero morphism (in any order) is
a zero morphism.

A (categorical) kernel of a morphism α : A→ B is an object kerα together with a
morphism ι : kerα→ A such that α◦ ι= 0 that satisfies the following universal property:
for every object C and every morphism ι′ : C→ A such that α◦ ι′ = 0, there is a unique
morphism β : C→ kerα such that ι′ = ι◦β.

(4) Draw a diagram taking all the above objects and morphisms into consideration.

(5) Let α : A→ B be a morphism of abelian groups. Show that kerα= {a∈ A|α(a) =
0} together with the inclusion kerα→ A as subgroup is a categorical kernel of α.

(6) What is the problem with categorical kernels in Rings?

Exercise 2.6. Show that the category Top of topological spaces has initial and terminal
objects as well as products and coproducts.

Recall from Exercise 1.30 the definition of SpecA as the set of all prime ideals p of
A together with the topology generated by the principal open subsets Ua where a varies
through all elements of A. For a ring homomorphism f : A→ B, we define f ∗ = Spec f
as the map that sends a prime ideal p of SpecB to f ∗(p) = f−1(p).

Show that this defines a contravariant functor Spec : Rings→ Top. Show that the
spectrum of the product of a finite number of rings, together with the induced morphisms
of spectra defined by the canonical projections, is a coproduct of their spectra.



Chapter 3

Modules

3.1 Definitions
Throughout this section, we let A be a ring.

Definition 3.1.1. An A-module is an (additively written) commutative group M (with
neutral element 0M) together with an action of A on M, which is a map

A×M −→ M
(a,m) 7−→ a.m

that satisfies

(1) 1.m = m;

(2) (ab).m = a.(b.m);

(3) (a+b).m = a.m+b.m;

(4) a.(m+n) = a.m+a.n

for all a,b ∈ A and m,n ∈M where a.m+b.n must be read as (a.m)+(b.n).
Let M and N be A-modules. A homomorphism from M to N (or A-linear map) is

a group homomorphism f : M→ N such that f (a.m) = a. f (m) for all a ∈ A and m ∈M.
Together with the usual composition of group homomorphisms, this defines the category
ModA of A-modules. A homomorphism f : M→ N of A-modules is an isomorphism if
it is bijective.

A submodule of M is a subgroup N of M such that a.n∈N for all a∈A and all n∈N.
Given a subset S of M, we define the submodule generated by S as the submodule

〈S〉A =
{ n

∑
i=1

ai.si ∈M
∣∣∣n> 1,a1, . . . ,an ∈ A,s1, . . . ,sn ∈ S

}

of M if S is not empty and 〈S〉A = {0} if S = ∅. A subset S of M generates M if
〈S〉A = M. A module M is finitely generated if M = 〈S〉A for a finite subset S of M. A
submodule N of M is cyclic if N = 〈{m}〉A for one element m ∈M.

71
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Remark. In the following, we explain some notational conventions and some first
observations.

• If there is no danger of confusion, we denote both the neutral element of A and
the neutral element of M by 0. The axioms of a module imply that a.0 = 0.m = 0
for all a ∈ A and m ∈M.

• An homomorphism f : M→ N of A-modules is an isomorphism if and only if it is
an isomorphism in the categorical sense, i.e. if and only if there is a homomorphism
g : N→M (which is the inverse bijection) such that g◦ f = idM and f ◦g = idN .

• A submodule N of M is itself an A-module with respect to the restriction of the
action A×M→M to A×N→ N.

• The submodule generated by a subset S of M is the smallest submodule of M that
contains S; in particular, it is indeed a submodule. Note that 〈M〉A = M, thus every
A-module has a generating set. If S = {s1, . . . ,sn}, then we also write 〈s1, . . . ,sn〉A
for 〈S〉A.

Example 3.1.2. We discuss some examples of modules, submodules and homomor-
phisms.

(0) The trivial A-module is the trivial group {0} together with the tautological A-
action given by a.0 = 0 for all a ∈ A.

(1) The underlying additive group of A together with the action of A on itself given
by the multiplication a.m = a ·m for all a,m ∈ A is an A-module. A submodule of
A is the same thing as an ideal of A.

(2) Let M be an A-module. The trivial submodule of M is {0}. The improper
submodule of M is M.

(3) Let M and N be A-modules. The zero map from M to N is the homomorphism
0 : M→ N that sends every element m ∈M to 0.

(4) For a field K, it is apparent from the respective definitions that a K-module is the
same thing as a K-vector space, and a homomorphism of K-modules is the same
thing as a homomorphism of K-vector spaces. In so far, modules can be seen as a
generalization of vector spaces from fields to rings.

(5) Let f : A→ B be a ring homomorphism. Then B is an A-module with respect to
the action of A on B given by a.b = f (a) ·b for all a ∈ A and b ∈ B. More general,
every B-module M is an A-module with respect to the action a.m = f (a).m where
a ∈ A and m ∈M.

(6) Let A be a unique factorization domain and K = FracA its field of fractions, which
is an A-module with respect to the inclusion A→ K. A principal fractional ideal
is the same thing as a cyclic submodule of the A-module K. This shows that the
notation 〈m〉A is unambiguous.

(7) Every A-module is an abelian group. More precisely, there is a forgetful functor
F : ModA→ Ab that sends an A-module to its underlying abelian group and an
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A-linear map to its underlying group homomorphism. Conversely, every abelian
group M is naturally a Z-module with the action Z×M→M defined by

a.m = m+ · · ·+m︸ ︷︷ ︸
a-times

for a > 0 and a.m =−
(
(−a).m

)
for a < 0. Since this is the only possible action of

Z on an abelian group, we conclude that a Z-module is the same thing as an abelian
group. More precisely, since every group homomorphisms between abelian groups
is Z-linear, that the forgetful functor F : ModZ→ Ab is an identification of the
two categories.

We can extend our list of examples in terms of the following constructions.

Definition 3.1.3. Let f : M→ N be a homomorphism of A-modules. The image of f is
the subset

im f =
{

n ∈ N
∣∣n = f (m) for some m ∈M

}

of N and the kernel of f is the subset

ker f =
{

m ∈M
∣∣ f (m) = 0

}

of M.

Lemma 3.1.4. Let f : M → N be a homomorphism of A-modules. Then im f is a
submodule of N and ker f is a submodule of M. The A-linear map f is injective if and
only if ker f = {0}.

Proof. We have to show that both im f and ker f are closed under subtraction and the
A-action. We begin with im f . Consider a ∈ A and n,n′ ∈ im f , i.e. n = f (m) and
n′ = f (m′) for some m,m′ ∈M. Then both

n−n′ = f (m)− f (m′) = f (m−m′) and a.n = a. f (m) = f (a.m)

are in im f , which shows that im f is a submodule of N. Consider a∈A and m,m′ ∈ ker f ,
i.e. f (m) = f (m′) = 0. Then

f (m−m′) = f (m)− f (m′) = 0 and f (a.m) = a. f (m) = a.0 = 0,

which shows that both m−m′ and a.m are in ker f . This shows that ker f is a submodule
of M.

If f is injective, then 0∈N has only one inverse image, which is 0∈M. Thus ker f =
{0}. If conversely, ker f = {0} and f (m) = f (m′), then f (m−m′) = f (m)− f (m′) = 0.
Since ker f = {0}, we conclude that m−m′ = 0 and thus m = m′, which shows that f is
injective.
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Definition 3.1.5. Let {Mi}i∈I be a family of A-modules. The product of {Mi} is the
Cartesian product ∏i∈I Mi together with the componentwise addition and the componen-
twise A-action, which is defined by a.(mi)i∈I = (a.mi)i∈I . The direct sum of {Mi} is
the submodule

⊕

i∈I

Mi =
{
(mi) ∈∏

i∈I
Mi

∣∣∣mi = 0 for all but finitely many i ∈ I
}

of the product ∏Mi.

Remark. Note that the inclusion
⊕

Mi→∏Mi is an isomorphism if I is finite. Both the
product and the direct sum come equipped with the coordinate projections π j : ∏Mi→
M j and π j :

⊕
Mi → M j and with the coordinatewise injections ι j : M j → ∏Mi and

ι j : M j →
⊕

Mi, which map an element m ∈M j to the tuple (mi)i∈I with m j = m and
mi = 0 for i 6= j. This homomorphisms together can be illustrated as follows:

⊕
Mi ∏Mi

M j

π j

ι j

π j

ι j

The product ∏Mi together with the family of canonical projections π j is the categorical
product of {Mi} and the direct sum

⊕
Mi together with the family of canonical inclusions

ι j is the categorical coproduct of {Mi}. The proof is left as Exercise 3.2

3.2 Quotients
Let A be a ring.

Definition 3.2.1. Let M be an A-module and N a submodule. The quotient of M by N
is the quotient M/N of abelian groups together with the A-action given by a.[m] = [a.m]
for a ∈ A and the class [m] ∈M/N of m ∈M.

Proposition 3.2.2 (Universal property of the quotient module). Let M be an A-module
and N a submodule.

(1) The A-action on the quotient M/N is well-defined and turns M/N into an A-
module. The quotient map π : M→M/N with π(m) = [m] for m ∈M is a homo-
morphism of A-modules.

(2) Let S⊂ N be a subset such that generates N, i.e. N = 〈S〉A. Then M/〈S〉A together
with the quotient map π : M→M/〈S〉A satisfies the following universal property:
for every A-module P and for every homomorphism f : M→ P such that f (S)⊂
{0} there is a unique homomorphism f̄ : M/〈S〉A→ P such that f = f̄ ◦π, i.e. the
diagram

M P

M/〈S〉A

f

π
�

f̄
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commutes.

Proof. We begin with the verification that the A-action on M is well-defined. Let
[m] = [m′] in M/N, i.e. n = m−m′ ∈ N. Then

a.[m] = [a.m] = [a.(m′+n)] = [a.m′+a.n] = [a.m′]+ [a.n] = a.[m′]

since a.n ∈ N and thus [a.n] = [0] in M/N. Thus the rule a.[m] = [a.m] yields a well-
defined map A× (M/N)→ (M/N).

We continue with the verification of the axioms of an A-module. By Proposition
1.1.7, the quotient M/N is a commutative group. Axioms (1)–(4) of a module hold since

(1) 1.[m] = [1.m] = [m],

(2) (ab).[m] = [(ab).m] = [a.(b.m)] = a.[b.m] = a.(b.[m]),

(3) (a+b).[m] = [(a+b).m] = [a.m+b.m] = [a.m]+ [b.m] = a.[m]+b.[m],

(4) a.[m+n] = [a.(m+n)] = [a.m+a.n] = [a.m]+ [a.n] = a.[m]+a.[n]

for all a,b ∈ A and m,n ∈M. This shows that M/N is an A-module, as claimed.
By Exercise 1.3, the map π : M→M/N is a group homomorphism. For a ∈ A and

m ∈M, we have π(a.m) = [a.m] = a.[m] = a.π(m), which shows that π is A-linear. This
completes the proof of (1).

We continue with the proof of (2). Given a homomorphism f : M→ P with f (S)⊂
{0}, we claim that the association [m] 7→ f (m) does not depend on the choice of
representative m ∈ [m] and defines a homomorphism M/〈S〉A → P. Once we have
proven this, it is clear that from the definition of f̄ that f = f̄ ◦π. Note that f = f̄ ◦π
implies the uniqueness of f̄ since it requires that f̄ ([m]) = f̄ (π(m)) = f (m).

In order to show that f̄ is well-defined, consider m,n ∈M such that [m] = [n]. By
Proposition 1.1.7, we have m−n ∈ 〈S〉A, and thus m−n = ∑aisi for some ai ∈ A and
si ∈ S. It follows that

f (m) = f (n+∑aisi) = f (n)+∑ f (ai) f (si)︸︷︷︸
=0

= f (n),

which shows that the value f̄ ([m]) = f̄ ([n]) does not depend on the choice of representa-
tive for [m] = [n]. The map f̄ is a homomorphism since

f̄ ([a.m]) = f (a.m) = a. f (m) = a. f̄ ([m])

for all a ∈ A and m ∈M. This concludes the proof of the proposition.

3.3 The tensor product
As usual, we let A be a ring. Let M and N be two A-modules. For every (m,n) ∈M×N,
we let A(m,n) be a copy of A and consider the direct sum

⊕
(m,n)∈M×N A(m,n). We write

a.[m,n] for the element of
⊕

A(m′,n′) whose coefficient in A(m,n) is a and whose other
coefficients are 0, i.e. a.[m,n] is the image of a under the canonical inclusion of A(m,n)
into

⊕
A(m′,n′). We write [m,n] = 1.[m,n].
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Definition 3.3.1. The tensor product of M and N is the quotient

M⊗A N =
( ⊕

(m,n)∈M×N

A(m,n)

)/
〈S〉

of
⊕

A(m,n) by the submodule generated by the subset S of
⊕

A.(m,n) that consists of
all elements of the forms

[a.m,n]−a.[m,n], [m+m′,n]− [m,n]− [m′,n],
[m,a.n]−a.[m,n], [m,n+n′]− [m,n]− [m,n′]

with a ∈ A, m,m′ ∈M and n,n′ ∈ N. We write m⊗n for the class of [m,n] in M⊗A N,
and call an element of this form in M⊗A N a pure tensor.

Remark. If the ring A is clear from the context, we simply write M⊗N for M⊗A N.
The defining relations of M⊗N imply at once the following rules for the tensor product:

(a.m)⊗n = a.(m⊗n) = m⊗ (a.n),
(m+m′)⊗n = m⊗n+m′⊗n,
m⊗ (n+n′) = m⊗n+m⊗n′

for all a ∈ A, m,m′ ∈M and n,n′ ∈ N.
Since the elements (m,n) generate the A-module

⊕
A.(m,n), every element in the

quotient M⊗N is a sum of pure tensors, i.e. of the form ∑mi⊗ ni for some mi ∈ M
and ni ∈ N. Since f (∑mi⊗ ni) = ∑ f (mi⊗ ni) for a homomorphism f : M⊗N → P,
it suffices to determine the images of pure tensors to describe a homomorphism from
M⊗N into another A-module.

Definition 3.3.2. Let M, N and P be A-modules. A bilinear map from M×N to P is
a map f : M×N→ P such that the association m 7→ f (m,n) defines an A-linear map
f (−,n) : M→ P for every n ∈ N and such that the association n 7→ f (m,n) defines an
A-linear map f (m,−) : N→ P for every m ∈M.

Proposition 3.3.3 (Universal property of the tensor product). Let M and N be two
A-modules.

(1) The association (m,n) 7→ m⊗n defines a bilinear map β : M×N→M⊗N.

(2) The tensor product M⊗N together with the bilinear map β : M×N →M⊗N
satisfies the following universal property: for every A-module P and every bilinear
map f : M×N→ P, there is a unique homomorphism f̂ : M⊗N→ P such that
f = f̂ ◦β, i.e. the diagram

M×N P

M⊗N

f

β �
f̂

commutes.
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Proof. We begin with (1). Given n ∈ N, the map β(−,n) : M→M⊗N is A-linear since

β
(
(m,n)+(m′,n)

)
= β(m+m′,n) = (m+m′)⊗n

= m⊗n+m′⊗n = β(m,n)+β(m′,n),

β
(
a.(m,n)

)
= β(a.m,n) = (a.m)⊗n = a.(m⊗n) = a.β(m,n)

for all a ∈ A and m,m′ ∈M. Similarly, the map β(m,−) : N →M⊗N is A-linear for
every m ∈M. This shows that β is bilinear. Thus (1).

We continue with (2). Given a bilinear map M×N→P, we claim that the association
∑mi⊗ni 7→∑ f (mi,ni) defines a homomorphism f̂ : M⊗N→ P. Once we have proven
this, it is clear from the definition of f̂ that f = f̂ ◦π. Note that f = f̂ ◦π implies the
uniqueness of f̂ since it requires that f̂ (∑mi⊗ni) = ∑ f̂ (mi⊗ni) = ∑ f (mi,ni).

To show that f̂ is indeed a well-defined homomorphism of A-modules, we first
consider the homomorphism f̃ :

⊕
(m,n)∈M×N A.(m,n)→ P that maps ∑ai.(mi,ni) to

∑ai f (mi,ni). We leave it as an exercise to see that this defines indeed a homomorphism,
which follows, for instance, from the universal property of the coproduct

⊕
A.(m,n).

As our next step, we verify whether all defining relation of M⊗N are in the kernel
of f̃ . Let a ∈ A, m,m′ ∈ M and n,n′ ∈ N. Since f (a.m,n) = a. f (m,n), the element
(a.m,n)− a.(m,n) is in ker f̃ . Since f (m+m′,n) = f (m,n)+ f (m′,n), the element
(m+m′,n)− (m,n)− (m′,n) is in ker f̃ . Similarly, the elements (m,a.n)−a.(m,n) and
(m,n+ n′)− (m,n)− (m,n′) are in ker f̃ . Thus by the universal property of quotient
modules (Proposition 3.2.2), there is a unique morphism f̂ : M⊗N → P such that
f̃ = f̂ ◦π where π :

⊕
A.(m,n)→M⊗N is the quotient map. We conclude that

f̂ (∑mi⊗ni) = ∑ f̂ (mi⊗ni) = ∑ f̂
(
π(mi,ni)

)
= ∑ f̃ (mi,ni) = ∑ f (mi,ni),

which shows that the constructed homomorphism f̂ is as prescribed. Thus (2).

Lemma 3.3.4. Let M, N and P be A-modules. Then the following holds.

(1) M⊗{0}= {0} and M⊗A'M;

(2) M⊗N ' N⊗M;

(3) (M⊗N)⊗P'M⊗ (N⊗P);

(4) M⊗ (N⊕P)' (M⊗N)⊕ (M⊗P).

Proof. We leave the proof as Exercise 3.1.

Remark. Properties (2) and (3) imply that we can write unambiguously ⊗r
i=1Mi =

M1⊗ . . .⊗Mr for A-modules M1, . . . ,Mr. The tensor product⊗Mi together with the map
∏Mi→⊗Mi that sends (m1, . . . ,mr) to m1⊗·· ·⊗mr satisfies an analogous universal
property to that of M⊗N, which is based on the notion of multilinear maps in place of
bilinear maps.
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Lemma 3.3.5 (Extension of scalars). Let f : A→ B be a ring homomorphism and M an
A-module. Then the association

θ : B× (B⊗A M) −→ B⊗A M
(a,∑bi⊗mi) 7−→ ∑(abi)⊗mi

is an action of B on M that endows B⊗A M with the structure of a B-module.

Proof. We begin with the proof that the action of B on B⊗A M is well-defined as a map.
We claim that the map θc : B×M→ B⊗A M with θc(b,m) = (cb)⊗m is bilinear for
every c ∈C. Indeed, the map θc(−,m) : B→ B⊗A M is A-linear for every m ∈M since

θc(a.b,m) = (c f (a)b)⊗m = a.
(
(cb)⊗m

)
= a.θc(b,m),

θc(b+b′,m) =
(
c(b+b′)

)
⊗m = (cb)⊗m+(cb′)⊗m = θc(b,m)+ θc(b′,m)

for all a ∈ A and b,b′ ∈ B. Similarly, the map θc(b,−) : M→ B⊗A M is A-linear for
every b ∈ B. Thus θc is bilinear, as claimed.

By the universal property of the tensor product (Proposition 3.3.3), there is a homo-
morphism θ̂c : B⊗A M→ B⊗A M with θ̂c(b⊗m) = (cb⊗m). We conclude that

f (a,∑bi⊗mi) = θ̂a(∑bi⊗mi) = ∑ θ̂a(bi⊗mi) = ∑(abi)⊗mi,

which shows that f is well-defined as a map. It also follows that θ(a,−) = θa is an
A-linear map B⊗A M→ B⊗A M, which implies axioms (4) of a module at once. Axioms
(1)–(3) hold since

1.
(

∑ci⊗mi
)
= ∑(1 · ci)⊗mi = ∑ci⊗mi,

(ab).
(

∑ci⊗mi
)
= ∑(abci)⊗mi = a.

(
∑b.(ci⊗mi)

)
,

(a+b).
(

∑ci⊗mi
)
= ∑(aci +bci)⊗mi = a.

(
∑ci⊗mi

)
+b.

(
∑ci⊗mi

)

for all a,b,ci ∈ A and mi ∈M. This shows that B⊗A M is a B-module, as claimed.

Proposition 3.3.6 (Tensor product of rings). Let αB : A→ B and αC : A→C be ring
homomorphisms. Then the following holds true.

(1) The tensor product B⊗A C is a ring with respect to the multiplication

m : (B⊗A C)× (B⊗A C) −→ B⊗A C.
(b⊗ c,b′⊗ c′) 7−→ (bb′)⊗ (cc′)

(2) The associations b 7→ b⊗1 and c 7→ 1⊗ c define ring homomorphisms ιB : B→
B⊗AC and ιC :C→B⊗AC, respectively, which are called the canonical inclusions.
We have ιB ◦αB = ιC ◦αC.

(3) The tensor product B⊗A C together with the canonical inclusions ιB : B→ B⊗A
C and ιC : C → B⊗A C satisfies the following universal property: given ring
homomorphisms fB : B→ D and fC : C→ D such that fB ◦αB = fC ◦αC, then
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there is a unique ring homomorphism f̂ : B⊗A C→ D such that fB = f̂ ◦ ιB and
fC = f̂ ◦ ιC, i.e. the diagram

B

A B⊗A C D

C

ιB

fB

�αB

αC

� f̂

ιC

fC

�

commutes.

Proof. We begin with the verification that the multiplication m is well-defined as a map.
Since the map

m̃ : B×C×B×C −→ B⊗A C
(b,c,b′,c′) 7−→ (bb′)⊗ (cc′)

is linear in each of the four factors, we can use the universal property of the tensor
product (Proposition 3.3.3) successively to gain a homomorphism

m̂ : B⊗A C⊗A B⊗A C −→ B⊗A C

with m̂(b⊗c⊗b′⊗c′) = m̃(b,c,b′,c′) = (bb′)⊗(cc′). Thus the prescribed association m
is the composition of m̂ with the bilinear map β : (B⊗A C)× (B⊗A C)→ B×C×B×C,
which shows that m is well-defined as a map.

We continue with the verification that B⊗A C is a ring. Since it is an A-module,
it is, in particular, an abelian group with respect to addition. The neutral element for
multiplication m is 1⊗1. The associativity and commutativity of m can easily be derived
from the corresponding properties of B and C, which results in a proof that B⊗A C is
a multiplicative monoid. Distributivity follows directly from the construction of m as
m̂◦β. Thus B⊗A C is a ring, which establishes (1).

We continue with (2). The map ιB : B→ B⊗A C is a ring homomorphism since
ιB(1) = 1⊗1 and

ιB(a+b) = (a+b)⊗1 = a⊗1+b⊗1 = ιB(a)+ ιB(b),
ιB(ab) = (ab)⊗1 = (a⊗1) · (b⊗1) = ιB(a) · ιB(b)

for all a,b ∈ B. That ιC is a ring homomorphism can be verified analogously. Since

ιB
(
αB(a)

)
= (a.1)⊗1 = 1⊗ (a.1) = ιC

(
αC(a)

)
,

for all a ∈ A, we have ιB ◦αB = ιC ◦αC. Thus (2).
We continue with (3). Given two ring homomorphisms fB : B→ D and fC : C→ D

such that fB ◦αB = fC ◦αC, we claim that the association b⊗ c 7→ fB(b) · fC(c) defines
a ring homomorphism f̂ : B⊗A C→ D. Once we have proven this, it is clear from the
definition of f̂ that fB = f̂ ◦ ιB and fC = f̂ ◦ ιC. Conversely, fB = f̂ ◦ ιB and fC = f̂ ◦ ιC
imply that

f̂ (b⊗ c) = f̂ (b⊗1) · f̂ (1⊗ c) = f̂
(
ιB(b)

)
· f̂
(
ιC(c)

)
= fB(b) · fC(c),
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which shows the uniqueness of f̂ .
To show that f̂ is indeed a well-defined ring homomorphism, we consider the map

f : B×C→ D that sends (b,c) to fB(b) · fC(c). If we consider D as an A-module with
respect to the ring homomorphism fB ◦αB = fC ◦αC : A→ D, then f is bilinear: it is
A-linear in the first argument since

f (b+b′,c) = fB(b+b′) fC(c) = fB(b) fC(c)+ fB(b′) fC(c) = f (b,c)+g(b′,c),

f (a.b,c) = fB
(
αB(a) ·b

)
· fC(c) = ( fB ◦αB)(a) · fB(b) · fC(c) = a. f (b,c),

for all a ∈ A, b.b′ ∈ B and c ∈ C. Similarly, it can be verified that f is A-linear in
the second argument. Thus the universal property of tensor products of A-modules
(Proposition 3.3.3) establishes a homomorphism f̂ : B⊗A C→D of A-modules such that
f̂ (b⊗ c) = f (b,c) = fB(b) · fC(c), as desired.

As an A-linear map, f̂ is in particular additive. Since f̂ (1⊗1) = fB(1) fC(1) = 1 and

f̂
(
(b⊗ c) · (b′⊗ c′)

)
= fB(bb′) fC(cc′) = fB(b) fC(c) fB(b′) fC(c′) = f̂ (b,c) f̂ (b′,c′),

f̂ is a ring homomorphism, which concludes the proof of (3).

Recall from Exercise 1.22 that there is a unique morphism Z→ A from Z into any
given ring A.

Corollary 3.3.7 (Coproduct of rings). Let B and C be rings and αB : Z → B and
αC : Z→ C the unique ring homomorphisms from Z to B and C, respectively. Then
B⊗ZC together with the canonical inclusions ιB : B→ B⊗ZC and ιC : C→ B⊗ZC is
a coproduct of B and C in the category Rings.

Proof. We verify the universal property of the coproduct. Consider two ring homo-
morphisms fB : B→ D and fC : C→ D. Then both fB ◦αB and fC ◦αC are equal to
the unique morphism Z→ D, i.e. fB ◦αB = fC ◦αC . Thus we can apply the universal
property of the tensor product B⊗ZC (Proposition 3.3.6), which shows that there is a
unique morphism f̂ : B⊗ZC→ D such that fB = f̂ ◦ ιB and fC = f̂ ◦ ιC. This verifies
the universal property of the coproduct.

3.4 The isomorphism theorems for modules
Let A be a ring in this section.

Theorem 3.4.1 (First isomorphism theorem). Let f : M→ N be a homomorphism of
A-modules. Then

M/ker f −→ im f
[m] 7−→ f (m)

is an isomorphism.
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Proof. Since f (ker f ) = {0}, the universal properties of quotient modules (Proposition
3.2.2) shows that f factors into the quotient map π : M → M/ker f followed by a
homomorphism f̄ : M/ker f → N for which f̄ ([m]) = f (m). Tautologically, the image
of f̄ is im f , i.e. we can restrict f̄ to a surjective homomorphism f̂ : M/ker f → im f ,
which is the association described in the theorem. This verifies in particular that f̂ is
well-defined.

To show that f̂ is injective, it suffices to shows that ker f̂ = {[0]} by Lemma 3.1.4.
This is the case since if [m] ∈ ker f̂ , then f (m) = f̂ ([m]) = 0. Thus m ∈ ker f and
[m] = [0]. We conclude that f̂ is an isomorphism, which concludes the proof of the
theorem.

Definition 3.4.2. Let M be an A-module and N, P submodules of M. The internal sum
of N and P is the submodule

N +P = 〈{N∪P}〉

of M.

Theorem 3.4.3 (Second isomorphism theorem). Let M be an A-module and N, P
submodules of M. Then

N/(N∩P) −→ (N +P)/P
[n] 7−→ [n]

is an isomorphism.

Proof. Consider the composition f : N→M/P of the injection N→M with the quotient
map M→M/P. Its kernel is ker f = N∩P. Its image consists of all cosets n+P with
n ∈ N, i.e. im f = (N +P)/P. By the first isomorphism theorem (Theorem 3.4.1), we
obtain an induced isomorphism f̂ : N/ker f → im f , which is precisely the map of the
theorem.

Theorem 3.4.4 (Third isomorphism theorem). Let M be an A-module and N a submod-
ule of M. Let π : M→M/N be the quotient map. Then

Φ :
{

submodules P⊂M containing N
}
−→

{
submodules Q of M/N

}

P 7−→ P/N = π(P)

is an inclusion preserving bijection, and

M/P −→ (M/N)/(P/N)
m+P 7−→ (m+P)+(P/N)

is a ring isomorphism for every submodule P of M containing N.

Proof. Note that π(P) = im(P→M→M/N) is a module as the image of a module,
and therefore a submodule of M/N. Thus Φ is well-defined. The inverse bijection to
Φ is given by sending a submodule Q of M/N to the inverse image π−1(Q), which is
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a submodule of M since both π(m−m′) = π(m)−π(m′) and π(a.m) = a.π(m) are in
Q for all a ∈ A and m,m′ ∈ π−1(Q). Clearly, N ⊂ π−1(Q). Since π

(
π−1(Q)

)
= Q, the

map Φ is surjective. Conversely, π−1(π(P)
)
= P+N for a submodule P⊂M. If N ⊂ P,

then P+N = P, which shows that Φ is injective. Thus Φ is a bijection as claimed. It is
clear that Φ is inclusion preserving.

Given a chain of submodules N ⊂ P ⊂M, we consider the composition f : M→
(M/P)/(P/N) of the quotient maps M → M/P and M/P→ (M/P)/(P/N). As the
composition of surjective maps it is surjective, i.e. im f = (M/P)/(P/N). Its kernel is
N +P = P. Thus the first isomorphism theorem (Theorem 3.4.1) shows that f induces
an isomorphism f̂ : M/ker f → im f with f̂ ([m]) = f (m), which is the map described
in the theorem.

3.5 Irreducible and indecomposable A-modules
Let A be a ring.

Definition 3.5.1. An A-module M is irreducible (or simple) if M is not trivial and the
only submodules of M are {0} and M. A decomposition of M is a family of submodules
{Ni}i∈I of M such that the map

⊕
i∈I Ni −→ M
(ni) 7−→ ∑i∈I ni

is an isomorphism. We write M =
⊕

Ni for a decomposition. The A-module M is
indecomposable if for every decomposition M = N1⊕N2 either N1 = {0} or N2 = {0}.

Remark. Obviously, every irreducible A-module is indecomposable. The converse is
not true. For example, the Z-module Z/4Z = {0̄, 1̄, 2̄, 3̄} is not irreducible since the
subgroup N1 = {0̄, 2̄} is a proper, nontrivial submodule. But it is indecomposable since
there is no submodule N2 such that Z/4Z is isomorphic to N1⊕N2 and since Z/4Z does
not have any other nontrivial proper submodule.

Lemma 3.5.2 (Schur’s lemma). Let M and N be irreducible A-modules and f : M→ N
a homomorphism. Then f is either an isomorphism or the zero map.

Proof. Assume that f is not the zero map. Then its kernel ker f is not M and its image
is not {0}. Since M and N are simple, we have ker f = {0} and im f = N. Thus f is
surjective and injective by Lemma 3.1.4, which shows that f is an isomorphism.

3.6 Exact sequences
Let A be a ring.

Definition 3.6.1. Let I ⊂Z be a set of consecutive integers, i.e. if m < p < n for m,n∈ I
and p ∈ Z, then p ∈ I. Let I+ = {i ∈ I | i−1 ∈ I} and I◦ = {i ∈ I | i−1, i+1 ∈ I}. A
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sequence of A-modules (with index set I) is a family {Mi}i∈I of A-modules together
with a family of homomorphisms {di : Mi−1→Mi}i∈I+ , which can be illustrated as

. . . Mi−1 Mi Mi+1 . . .
di−1 di di+1 di+2

A sequence of A-modules
(
{Mi},{di}

)
is exact at Mi for i ∈ I◦ if imdi = kerdi+1, and

it is exact if it is exact at Mi for all i ∈ I◦. A short exact sequence is an exact sequence
of the form

0 N M Q 0i p

i.e. I = {0, . . . ,4}, N = M1, M = M2, Q = M3, M0 = M4 = 0 and i = d2, p = d3, d1 =
d4 = 0 where 0 denotes the trivial A-module and 0 the zero map.

Remark. We can prolong any sequence by an infinite sequence of trivial modules and
zero maps to get a sequence with index set I = Z. In the case of a short exact sequence
0→ N→M→ Q→ 0, this yields a “long” exact sequence

. . . 0 0 N M Q 0 0 . . .

with index set Z.

Lemma 3.6.2. A 5-term sequence 0→ N i→M
p→ Q→ 0 of A-modules is exact if and

only if i : N → M is injective, p : M→ Q is surjective and im i = ker p. In this case,
N ' ker p and Q'M/ im i.

Proof. The sequence 0→ N i→ M
p→ Q→ 0 is exact if and only if it is exact at N,

M and Q. It is exact at N if and only if ker i = im0 = {0}, which is equivalent with
i being injective by Lemma 3.1.4. It is exact at Q if and only if im p = ker0 = Q,
which is equivalent with p being surjective. By definition, i is exact at M if and only if
im i = ker p. This proves the first claim.

If the sequence is exact, then the injective homomorphism i defines an isomorphism
N→ im i = ker p, which is our second claim. Since im p = Q, the first isomorphism
theorem (Theorem 3.4.1) shows that Q 'M/ker p = M/ im i, which verifies our last
claim.

Example 3.6.3. We discuss some examples of short exact sequences.

(1) Let N be a submodule of M with inclusion map i : N→M, and let p : M→M/N
be the quotient map. Then Lemma 3.6.2 attests that

0 N M M/N 0i p

is a short exact sequence.
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(2) The sequences

0 Z/2Z Z/4Z Z/2Z 0
0̄ 0̄; 0̄, 2̄ 0̄
1̄ 2̄; 1̄, 3̄ 1̄

i p

and
0 Z/2Z Z/6Z Z/3Z 0

0̄ 0̄; 0̄, 3̄ 0̄
1̄ 3̄; 1̄, 4̄ 1̄

2̄, 5̄ 2̄

i p

of Z-modules are short exact.

Definition 3.6.4. A short exact sequence 0→ N i→M
p→ Q→ 0 is split if there exists

an isomorphism f : M→ N⊕Q such that the diagram

0 N M Q 0

0 N N⊕Q Q 0

i

idN

p

f idQ

ιN πQ

commutes.

Theorem 3.6.5. Let 0→N i→M
p→Q→ 0 be a short exact sequence. Then the following

are equivalent.

(1) The sequence 0→ N i→M
p→ Q→ 0 is split.

(2) There is a retract to i, which is a homomorphism r : M→ N such that r ◦ i = idN .

(3) There is a section to p, which is a homomorphism s : Q→M such that p◦ s = idQ.

Proof. We will establish the circle of inclusion (1)⇒(2)⇒(3)⇒(1). We begin with
(1)⇒(2). Given an isomorphism f : M→ N⊕Q that splits the short exact sequence,
then we define r = id−1

N ◦πN ◦ f , which yields the diagram

0 N M Q 0

0 N N⊕Q Q 0

i

idN

p

f

r

idQ

ιN πQ

πN

Since the squares of the diagram commute and since πN ◦ ιN = idN , we conclude that

r ◦ i = id−1
N ◦πN ◦ f ◦ i = id−1

N ◦πN ◦ ιN ◦ idN = id−1
N ◦ idN ◦ idN = idN ,
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which shows that r is a retract to i. Thus (2).
We continue with (2)⇒(3). Let r : M→ N be a retract to i. Then r is surjective.

Thus by the first isomorphism theorem (Theorem 3.4.1), we have N ∼M/kerr. This
yields a commutative diagram

0 0

N kerr
M

N Q

0 0

i
idN

j

p◦ j

r p

whose diagonals are short exact sequences. We claim that p ◦ j : kerr → Q is an
isomorphism. Once we have proven this, we can define s = j ◦ (p ◦ j)−1, which is a
section to p since

p◦ s = (p◦ j)◦ (p◦ j)−1 = idQ.

We begin with the injectivity of p◦ j. If m ∈ ker(p◦ j), then j(m) ∈ ker p = im i.
Thus j(m) = i(n) for some n ∈ N and

j(m) = i(n) = i◦ r ◦ i︸︷︷︸
=idN

(n) = i◦ r ◦ j︸︷︷︸
=0

(m) = 0.

Since j is injective, this means that m = 0, which shows that ker(p ◦ j) = {0}. By
Lemma 3.1.4, we conclude that p◦ j is injective.

We continue with the surjectivity of p◦ j. Given q ∈ Q, there is an m ∈M such that
p(m) = q since p is surjective. Thus

q = p(m)− i◦ r ◦ p︸︷︷︸
=0

(m) = p
(
m− i◦ r(m)

)
= p(m′)

where we define m′ = m− i◦ r(m). Since

r(m′) = r(m)− r ◦ i︸︷︷︸
=idN

◦r(m) = r(m)− r(m) = 0,

m′ = j(m′′) for some m′′ ∈ kerr. Thus q = p(m′) = (p◦ j)(m′′), which shows that p◦ j
is surjective. This shows that p◦ j is an isomorphism, and thus (3).

We continue with (3)⇒(1). Let s : Q→ M be a section to p. Consider the ho-
momorphism g : N⊕Q→ M that sends (n,q) to i(n)+ s(q). We claim that g is an
isomorphism.

We begin with the injectivity of g. If (n,q) ∈ kerg, i.e. i(n)+ s(q) = 0, then i(n) =
−s(q) ∈ (im i)∩ (ims). Since p◦ s = idQ, the restriction of p to ims→ Q is injective.
Thus we have

(im i)∩ (ims) = (ker p)∩ (ims) = {m ∈ ims | p(m) = 0} = {0}.
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This shows that i(n) = s(q) = 0. Since i and s are injective, we conclude that (n,q) =
(0,0), which shows that g is injective.

We continue with the surjectivity of g. By the first isomorphism theorem (Theorem
3.4.1), P induces an isomorphism p̄ : M/ker p→ Q. Thus for [m] ∈ M/ker p with
m ∈M, we have

[m] = p̄−1(p(m)
)
= p̄−1( p◦ s︸︷︷︸

=idQ

◦p(m)
)
= [s◦ p(m)],

and thus m ∈ s(Q)+ i(N) = g(N⊕Q). This shows that g is surjective.
Thus g is an isomorphism and has an inverse f : M → N ⊕Q. This yields the

following diagram:

0 N M Q 0

0 N N⊕Q Q 0

i

idN

p

f idQ

s

ιN πQ

g

By the definition of g, we have g◦ ιN = i◦ id−1
N and p◦g = id−1

Q ◦πQ. Thus

ιN ◦ idN = f ◦g◦ ιN ◦ idN = f ◦ i◦ id−1
N ◦ idN = f ◦ i

and
idQ ◦ p = idQ ◦ p◦g◦ f = idQ ◦ id−1

Q ◦πQ ◦ f = πQ ◦ f .

This shows that the sequence 0→ N→M→ Q→ 0 splits, which establishes (1) and
concludes the proof of the theorem.

Example 3.6.6. We discuss the concept of split short exact sequences in some examples.

(1) The prototype of a split exact sequence is of the form

0 N N⊕Q Q 0
ιN πQ

where N and Q are two A-modules.

(2) Consider the two short exact sequences

0 Z/2Z Z/4Z Z/2Z 0i p

and
0 Z/2Z Z/6Z Z/3Z 0i p

of Z-modules from Example 3.6.3. The first sequence is not split since Z/4Z is not
isomorphic to (Z/2Z)⊕(Z/2Z). The second sequence is split since the surjection
p : Z/6Z→ Z/3Z has a section, which is the homomorphism s : Z/3Z→ Z/6Z
with s(ā) = 2ā for a ∈ {0̄, 1̄, 2̄}, using Theorem 3.6.5. This yields a new proof for
the fact that Z/6Z' (Z/2Z)⊕ (Z/3Z).
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(3) As the following example shows, it is not enough to require that M ' N⊕Q for a
short exact sequence 0→ N→M→ Q→ 0 to split. The sequence

0 Z Z⊕
⊕

i>1

Z/2Z
⊕

i>0

Z/2Z 0i p

with i(a) = (2a,0,0, . . .) and p(a0, ā1, ā2, . . .) = (ā0, ā1, ā2, . . .) is easily seen to
be exact, and the middle term is isomorphic to the direct sum of the two outer
terms. Still, the sequence is not split since a section s to p must, in particular, map
the element (1̄, 0̄, 0̄, . . .) to an element (a, 0̄, 0̄, . . .) with a ∈ Z odd. This would
define a non-zero homomorphism Z/2Z→ Z, which does not exist.

Definition 3.6.7. Let M be an A-module, and N a submodule of M. A complement of
N in M is a submodule Q of M such that the homomorphism

N⊕Q −→ M
(n,q) 7−→ n+q

is an isomorphism.

Remark. Equivalently, a submodule Q of M is a complement of N in M if they intersect
trivially, i.e. N ∩Q = {0}, and if they generate M, i.e. N +Q = M. We also write
M = N⊕Q if these two conditions hold.

Corollary 3.6.8. Let M be an A-module and N a submodule of M. Then N has a
complement in M if and only if there is a retract r : M → N to the inclusion map
i : N→M, i.e. r ◦ i = idN .

Proof. Assume that N has a complement Q⊂M. Then M = N⊕Q and the inclusion
i : N→M is equal to the canonical inclusion ιN : N→ N⊕Q = M, for which that the
canonical projection πN : M = N⊕Q→ N is a retract.

Conversely, assume r : M→ N is a retract to i. Let π : M→M/N be the quotient
map. Then the short exact sequence

0 N M M/N 0i π
r

splits, and there is a section s : M/N→M to π by Theorem 3.6.5. Thus M = N⊕Q for
Q = ims, which shows that N has a complement in M.

3.7 Exact functors
Throughout this section, we let A and B be rings. Let M and N be A-modules. Then
the set HomA(M,N) of A-linear maps from M to N is an A-module with respect to
valuewise addition and scalar multiplications, which are defined by the rules

( f +g)(m) = f (m)+g(m) and (a. f )(m) = a.
(

f (m)
)
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for m ∈M, a ∈ A and f ,g ∈ HomA(M,N). The verification that these operations turn
HomA(M,N) indeed into an A-module are left as Exercise 3.4.

Definition 3.7.1. A covariant functor F : ModA→ModB is additive if the map

HomA(M,N) −→ HomB
(
F(M),F(N)

)

is a group homomorphism for all A-modules M and N. A contravariant functor F :
ModA→ModB is additive if the map

HomA(M,N) −→ HomB
(
F(N),F(M)

)

is a group homomorphism for all A-modules M and N.

In the following, we sometimes do not specify whether a functor is covariant or
contravariant if we do not have to consider the direction of the image morphisms
explicitly. In these cases, we consider both variants of a functor.

Lemma 3.7.2. Let F : ModA→ModB be an additive functor. Then the following holds
true.

(1) Let 0 be the trivial A-module. Then F(0) is the trivial B-module.

(2) Let 0 : M→ N be the zero map between two A-modules M and N. Then F(0) is
the zero map.

Proof. We explain the proof in the case of a covariant functor. The case of a contravariant
functor is analogous. Claim (2) is clear since HomA(M,N)→ HomB

(
F(M),F(N)

)
is

a group homomorphism.
Since the identity map id0 : 0→ 0 is equal to the zero map, claim (2) implies that

the identity map idF(0) : F(0)→ F(0) is the zero map. This can only be the case if F(0)
is the trivial B-module.

Example 3.7.3. We discuss some examples of additive functors.

(0) The identity functor id : ModA →ModA that sends every A-module and every
A-linear map to itself and the zero functor 0 : ModA→ModB that sends every
A-module to the trivial B-module 0 and every A-linear map f : M→ N to the zero
map 0 : 0→ 0 are additive.

(1) Let P be an A-module. Let HomA(P,−) : ModA→ModA be the covariant functor
that sends an A-module M to HomA(P,M) and an A-linear map f : M→ N to the
map f∗ : HomA(P,M)→ HomA(P,N) that sends h : P→M to f ◦h : P→ N. We
leave the proof that this defines indeed a functor as Exercise 3.5. This functor is
additive since ( f + g) ◦ h = ( f ◦ h)+ (g ◦ h) for all A-linear maps f ,g : M→ N
and h ∈ HomA(P,M). The proof of this equality is left as Exercise 3.4.

Note that HomA(A,−) is “essentially equal” to the identity functor id : ModA→
ModA, by which we mean that HomA(A,M) is canonically isomorphic to M. The
functor HomA(0,−) is essentially equal to the zero functor 0 : ModA→ModA.
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(2) Let P be an A-module. Similar to HomA(P,−), we have a contravariant functor
HomA(−,P) : ModA→ModA that sends an A-module M to HomA(M,P) and an
A-linear map f : M→ N to the map f ∗ : HomA(N,P)→ HomA(M,P) that sends
h : N→ P to h◦ f : M→ P. Again, we leave the proof that this defines indeed a
functor as Exercise 3.5. This functor is additive since h◦( f +g) = (h◦ f )+(h◦g)
for all A-linear maps f ,g : M → N and h ∈ HomA(N,P). The proof is left as
Exercise 3.4.

Note that if A = K is a field, then the functor HomK(−,K) takes a K-vector space
V to its dual space V ∗ and a K-linear map f : V →W to its adjoint f ∗ : V ∗→W ∗.

(3) Let P be an A-module and P⊗A− : ModA→ModA the covariant functor that
sends an A-module M to P⊗A M and an A-linear map f : M → N to the map
fP : P⊗A M→ P⊗A N that maps p⊗m to p⊗ f (m) for all p ∈ P and m ∈M. We
leave the proof that this is indeed a functor as Exercise 3.5. It is additive since

( f +g)P(p⊗m) = p⊗
(
( f +g)(m)

)

=
(

p⊗ f (m)
)
+
(

p⊗g(m)
)

=
(

fP)+(gP)
)
(p⊗m)

for all p ∈ P, m ∈M and f ,g ∈ HomA(M,N).

(4) Let f : A→ B be a ring homomorphism. The restriction of scalars is the covariant
functor ResB/A : ModB→ModA that sends a B-module M to itself, but considered
as an A-module with respect to the A-action given a.m = f (a).m for a∈ A and m∈
M, and that sends a B-linear map f : M→ N to itself. We leave the proof that this
defines indeed a functor as Exercise 3.6. This defines an inclusion HomB(M,N)→
HomA(ResB/A(M),ResB/A(N)), which is tautologically a group homomorphism
since ResB/A(M) = M and ResB/A(N) = N as commutative groups. Thus the
restriction of scalars is an additive functor.

(5) Let f : A→ B be a ring homomorphism. The extension of scalars is the covariant
functor B⊗A− : ModA → ModB that sends an A-module M to the B-module
B⊗A M whose action is given by a.(b⊗m) = (ab)⊗m for a,b ∈ B and m ∈M
and that sends an A-linear map f : M→ N to the map fB : B⊗A M→ B⊗A N that
sends a⊗m to a⊗ f (m) for a ∈ B and m ∈ M. We leave the proof that this is
indeed a functor as Exercise 3.6. The functor B⊗A− is additive for the same
reason as P⊗A− from example (3) is additive.

Definition 3.7.4. An additive covariant functor F : ModA→ModB is left exact (right
exact) if for every short exact sequence 0→ N i→ M

p→ Q→ 0 of A-modules, the
induced sequence

0 F(N) F(M) F(Q)
(

F(N) F(M) F(Q) 0
)

F(i) F(p)

F(i) F(p)
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is exact. An additive contravariant functor F : ModA→ModB is left exact (right exact)
if for every short exact sequence 0→ N i→ M

p→ Q→ 0 of A-modules, the induced
sequence

0 F(Q) F(M) F(N)
(

F(Q) F(M) F(N) 0
)

F(p) F(i)

F(p) F(i)

is exact. A functor F : ModA→ModB is exact if it is both left and right exact.

Example 3.7.5. Both the identity id : ModA→ModA and the zero functor 0 : ModA→
ModB are tautologically exact functors.

Note that there are additive functors that are neither left nor right exact. For example
the covariant functor F : ModZ→ModZ that sends a Z-module M to 2M = {2m ∈M |
m ∈M} and a homomorphism f : M→ N to its restriction f |2M : 2M→ 2N is additive.
However, F sends the short exact sequence 0→ Z/2Z→ Z/4Z→ Z/2Z→ 0 from
Example 3.6.3 to the sequence 0→ 0→Z/2Z→ 0→ 0, which is not exact at the middle
term Z/2Z.

Proposition 3.7.6. Let P be an A-module. Then both HomA(P,−) and HomA(−,P) are
left exact.

Proof. Let 0→ N i→ M
p→ Q→ 0 be a short exact sequence of A-modules. We first

consider the sequence

0 HomA(P,N) HomA(P,M) HomA(P,Q),
i∗ p∗

which is exact if i∗ is injective and im i∗ = ker p∗.
We begin with the injectivity of i∗. Consider two homomorphisms f ,g∈HomA(P,N)

such that i∗( f ) = i∗(g). Since i is a monomorphism, the equality i ◦ f = i ◦ g implies
that f = g. Thus i∗ is injective.

We continue with showing that im i∗ = ker p∗. Since p ◦ i = 0 and zero maps are
preserved under additive functors by Lemma 3.7.2, we conclude that p∗ ◦ i∗ = 0, which
shows that im i∗ is contained in ker p∗. In order to show the converse inclusion, we
consider a homomorphism g : P→M in the kernel of p∗, i.e. p◦g = p∗(g) = 0. This
means that img is contained in ker p and restricts to a homomorphism ḡ : P→ ker p.
Similarly, the injection i : N→M restricts to an isomorphism ī : N→ im i. This yields
the commutative diagram

P

im i = ker p

N M Q

ĝ
ḡ

g 0

ī

i p
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where ĝ = ī−1 ◦ ḡ. This shows that g = i ◦ ĝ = i∗(ĝ) is in the image of i∗. Thus
im i∗ = ker p∗, which concludes the proof that HomA(P,−) is left exact.

We continue to consider the sequence

0 HomA(Q,P) HomA(M,P) HomA(N,P),
p∗ i∗

which is exact if p∗ is injective and im p∗ = ker i∗.
We begin with the injectivity of p∗. Consider two homomorphisms f ,g∈HomA(Q,P)

such that p∗( f ) = p∗(g). Since p is an epimorphism, the equality f ◦ p = g◦ p implies
that f = g. Thus p∗ is injective.

We continue with showing that im p∗ = ker i∗. Since p ◦ i = 0 and zero maps are
preserved under additive functors by Lemma 3.7.2, we conclude that i∗ ◦ p∗ = 0, which
shows that im p∗ is contained in ker i∗. In order to show the converse inclusion, we
consider a homomorphism g : M→ P in the kernel of i∗, i.e. g ◦ i = i∗(g) = 0. This
means that im i is contained in kerg, and thus g factors into the projection M→M/ im i,
followed by a homomorphism ḡ : M/N→P. By the first isomorphism theorem (Theorem
3.4.1), the surjection p : M→ Q restricts to an isomorphism p̄ : M/ker p→ Q. This
yields the commutative diagram

N M Q

M/ im i = M/ker p

P

0

i p

g ĝ

p̄

ḡ

where ĝ = ḡ ◦ p̄−1. This shows that g = ĝ ◦ p = p∗(ĝ) is in the image of p∗. Thus
im p∗ = ker i∗, which concludes the proof that HomA(−,P) is left exact.

Remark. The functors HomA(P,−) and HomA(−,P) are in general not right exact. For
instance, let A = Z and P = Z/nZ. Consider the short exact sequence

0 Z Z Z/nZ 0i p

of Z-modules where n> 2 is an integer and where i(a) = na and p(a) = ā for a ∈ Z. If
we apply HomZ(Z/nZ,−) to p, we get

p∗ : HomZ(Z/nZ,Z) −→ HomZ(Z/nZ,Z/nZ),

which is not surjective since the only homomorphism Z/nZ→ Z is the zero map,
but there are homomorphisms Z/nZ → Z/nZ that are not zero. This shows that
HomZ(Z/nZ,−) is not exact.

If we apply HomZ(−,Z/nZ) to i, the map

i∗ : HomZ(Z,Z/nZ) −→ HomZ(Z,Z/nZ),
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maps every homomorphism f : Z→ Z/nZ to f ◦ i, which is the zero map since for
all a ∈ Z, we have f ◦ i(a) = f (n.a) = n. f (a) = 0 in Z/nZ. This shows that i∗ is not
surjective and thus HomZ(Z/nZ,−) not exact.

If A is a ring and P an A-module such that HomA(P,−) is exact, then P is called
projective. If HomA(−,P) is exact, then P is called injective.

Lemma 3.7.7. Let i : N→M and p : M→ Q be homomorphisms of A-modules.

(1) If the sequence

0 HomA(P,N) HomA(P,M) HomA(P,Q)
p∗ i∗

is exact for every A-module P, then 0→ N i→M
p→ Q is exact.

(2) If the sequence

0 HomA(Q,P) HomA(M,P) HomA(N,P)
p∗ i∗

is exact for every A-module P, then N i→M
p→ Q→ 0 is exact.

Proof. We only prove (2). The proof of (1) is analogous and left as an exercise. We
begin with the surjectivity of p. Let π : Q→ Q/ im p be the quotient map and consider
the hypothesis of (2) for P = Q/ im p. Then p∗(π) = π ◦ p : M→ Q→ P is the zero
map. Since p∗ is injective, we conclude that π is the zero map. Since π is surjective, this
means that P = Q/ im p = 0 and thus im p = Q. This shows that p is surjective.

We continue with im i = ker p. Using the hypothesis of (2) for P = Q yields

p◦ i = idQ ◦ p◦ i = i∗(idQ ◦ p) = i∗ ◦ p∗︸ ︷︷ ︸
=0

(idQ) = 0,

which shows that im i ⊂ ker p. To establish the converse inclusion, we consider the
quotient map π : M → M/ im i and use the hypothesis of (2) for P = M/ im i. Then
i∗(π) = π ◦ i : N→ P is the zero map, i.e. π ∈ ker i∗ = im p∗. Thus π = p∗( f ) for some
homomorphism f : Q→ P, which can be illustrated follows:

N M Q

P = M/ im i

i

0

p

π
f

We conclude that ker p⊂ kerπ = im i, which completes the proof.

Proposition 3.7.8. Let P be an A-module. The functor P⊗A− : ModA→ModA is right
exact.
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Proof. Let M and N be A-modules. Then map

ΨM,N : HomA
(
M,HomA(P,N)

)
−→ HomA(P⊗A M,N)

that sends a homomorphism f : M → HomA(P,N) to the homomorphism ΨM,N( f ) :
P⊗A M → N that maps p⊗m to

(
f (m)

)
(p) for p ∈ P and m ∈ M is a well-defined

isomorphism of A-modules. Moreover, the functor HomA(P,−) : ModA →ModA is
right adjoint to P⊗A−. We leave the details as Exercise 3.15.

This means that given a short exact sequence 0→ N i→M
p→ Q→ 0 of A-modules,

we obtain a commutative diagram

0 HomA(Q,G(P′)) HomA(M,G(P′)) HomA(N,G(P′))

0 HomA(P⊗A Q,P′) HomA(P⊗A M,P′) HomA(P⊗A N,P′)

p∗

ΨQ,G(P′)

i∗

ΨM,G(P′) ΨN,G(P′)

(pP)
∗ (iP)∗

for every A-module P′ and G(P′) = HomA(P,P′).
By Proposition 3.7.6, the functor Hom(−,G(P′)) is left exact, which shows that the

upper row of the diagram is exact. Since all the vertical maps are isomorphisms, this
implies that the lower row is exact. Since this holds for every A-module P′, Lemma
3.7.7 implies that the sequence

P⊗A N P⊗A M P⊗A Q 0
iP pP

is exact. This shows that P⊗A− is right exact and concludes the proof.

Remark. The functor P⊗A− is in general not exact since it does not preserve injectivity.
Indeed consider A = Z and the injective homomorphism i : Z→ Z that maps a to na
for some fixed integer n> 2. Then the induced homomorphism iZ/nZ : (Z/nZ)⊗ZZ→
(Z/nZ)⊗ZZ maps the nonzero element 1̄⊗1 to

1̄⊗n = n̄⊗1 = 0̄⊗1 = 0̄⊗0,

which is the zero in (Z/nZ)⊗ZZ. Thus iZ/nZ is not injective.

The following property can be deduced from the fact that P⊗A− is right exact.

Proposition 3.7.9. Let I be an ideal of A and M an A-module. Define

IM = 〈a.m|a ∈ I,m ∈M〉A =
{

∑ai.mi
∣∣ai ∈ I,mi ∈M

}
,

which is a submodule of M. Then the map

f : M⊗A (A/I) −→ M/IM
m⊗ [a] 7−→ [a.m]

is an isomorphism of A-modules.



94 Modules

Proof. The submodule I of A defines a short exact sequences 0→ I i→ A
p→ A/I→ 0

of A-modules, and similarly the submodule IM of M defines a short exact sequences

0→ IM
j→ M

q→ M/IM→ 0. By Proposition 3.7.8, applying M⊗A− to the first of
these short exact sequences yields an exact sequence

M⊗A I M⊗A A M⊗A (A/I) 0.
iM pM

The map M× I→ IM with (m,a) 7→ a.m is bilinear and defines thus a homomorphism
h : M⊗A I→ IM with h(m⊗a) = a.m, which is surjective. The association m⊗a 7→ a.m
extends to the canonical isomorphism g : M⊗A A→M. Since

(q◦g)◦ iM = q◦ j︸︷︷︸
=0

◦h = 0,

we have (q◦g)(im iM) = {0}. Since

M⊗A (A/I) = im pM ' (M⊗A A)/ker pM = (M⊗A A)/ im iM

by the first isomorphism theorem (Theorem 3.4.1), the universal property of quotients
(Proposition 3.2.2) implies that the map q◦g : M⊗A A→M/IM factors into pM com-
posed with the morphism f : M⊗A (A/I)→ M/IM that maps m⊗ [a] to [a.m]. This
shows that f is well-defined and yields the commutative diagram

M⊗A I M⊗A A M⊗A (A/I) 0

IM M M/IM 0

iM

h

pM

g f

j q

with exact rows. That f is an isomorphism can be proven by a “diagram chase”, which
we will demonstrate in the following. We will refer to the individual steps of the proof
by red circled numbers in the illustrations.

We begin with the surjectivity of f , which can be proven along the following steps.

IM M M/IM 0

M⊗A I M⊗A A M⊗A (A/I) 0

y x

z u

j q

iM pM

h g f
1

2
3

4

Let x be an element of M/IM. 1 Since q is surjective, there is an element y ∈M such
that x = q(y). 2 Since g is surjective, y = g(z) for some z ∈M⊗A A. 3 Let u = pM(z).
4 Then f (u) = f ◦ pM(z) = q◦g(z) = x, which shows that f is surjective.
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We continue with the injectivity of f , which can be proven along the following steps.

IM M M/IM 0

M⊗A I M⊗A A M⊗A (A/I) 0

u z 0

v y x

1
2

3
45

6
7

j q

iM pM

h g f

Let x be an element of the kernel of f . 1 Then f (x) = 0. 2 Since pM is surjective, there
is an element y in M⊗A A with pM(y) = x. 3 Let z = g(y). 4 Since q(z) = g◦q(y) =
f ◦ pM(y) = f (x) = 0, we have z ∈ kerq. 5 Since kerq = im j, we have z = j(u) for
some element u ∈ IM. 6 Since h is surjective, u = h(v) for some v ∈M⊗A I. 7 Since g
is an isomorphism, we have y = g−1(z) = g−1 ◦ j ◦h(v) = g−1 ◦g◦ iM(v) = iM(v). We
conclude that y ∈ im iM = ker pM and thus x = pM(y) = 0. This shows that ker f = {0},
which completes the proof of the injectivity of f .

3.8 Free modules and torsion modules
Let A be a nontrivial ring, i.e. we assume 0 6= 1 throughout the section.

Definition 3.8.1. Let M be an A-module. A basis of M is a subset B of M such that the
homomorphism ⊕

s∈B
A −→ M

(av)v∈B 7−→ ∑
v∈B

av.v

is an isomorphism, i.e. for every m ∈ M, there is a unique (av) ∈
⊕

v∈BA such that
m = ∑av.v. An A-module M is free if it has a basis. If M is a free A-module with basis
B, then the rank of M is defined as the cardinality rk M of B.

Note that a basis is, in particular, a generating set. That the rank of a free A-module
is well-defined follows from the following fact.

Proposition 3.8.2. Let M be a free A-module. Then any two bases of M have the same
cardinality.

Proof. Let B be a basis of M and f :
⊕

v∈BA→M the corresponding isomorphism. Let
m a maximal ideal of A and K = A/m the residue field. Let πM : M→M/mM be the
quotient map where mM = 〈a.m | a ∈ m,m ∈M〉A and fv : A→M/mM the map with
fv(a) = [a.v] for v ∈ B. Since fv(a) = 0 if a ∈ m, the universal property of quotient
modules (Proposition 3.2.2) implies that fv factors into the quotient map πA : A→ K,
followed by the homomorphism f̄v : K→M/mM that sends [a] to [a.v].

By Proposition 3.7.9, M/mM 'M⊗A K is an K-module with respect to the action
[a].[m] = [a.m] for [a] ∈ K and [m] ∈M/mM. This means that f̄v : K→M/mM is, in
fact, a K-linear map.
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Let B = {[v] | v ∈ B}. Adding the maps f̄v for all v ∈ B yields the K-linear map
f̄ :
⊕

[v]∈BK → M/mM that maps ([av]) to ∑[av.m], which is clearly surjective. Its
injectivity can be shown as follows. Assume that ∑[av.m] = f̄ ([av]) = 0, i.e. ∑av.m =

∑ ãv.v for some ãv ∈ m. Then ãv = av since B is a basis. Thus ([av]) = ([0]) in⊕
[v]∈BK, which shows that f̄ is injective. We conclude that f̄ :

⊕
[v]∈BK→M/mM is

an isomorphism of K-vector spaces.
Since v 7→ [v] defines a bijection B→ B, our claim follows from the fact that any

two basis for the K-vector space M/mM have the same cardinality.

Example 3.8.3. We discuss some examples.

(1) Let B be a set. Then the A-module
⊕

v∈BA is tautologically free.

(2) Let K be a field. Then a basis of a K-vector space is the same thing as a basis
in the sense of Definition 3.8.1. Since every K-vector space has a basis, every
K-module is free.

(3) The polynomial ring A[T ], considered as an A-module, is free with bases B =
{1,T,T 2, . . . ,}.

(4) If A 6= {0} is not a field, then A has a proper nonzero ideal I. In this case, the
A-module M = A/I is not free. Indeed if M = 〈S〉A, then we note first that S 6=∅
since I is proper, i.e. S contains an element [s], which is the residue class of an
element s ∈ A. By our assumptions, I contains a nonzero element a. Then as ∈ I
and thus a.[s] = [as] = [0 · s] = 0.[s], which shows that M is not free.

Definition 3.8.4. An element a ∈ A is regular if it is not a zero divisor. Let M be an
A-module. The torsion submodule of M is the subset

T (M) = {m ∈M | a.m = 0 for a regular element a ∈ A}

of M. An A-module M is torsion-free if T (M) = {0} and M is a torsion module if
T (M) = M.

Remark. Note that the product ab of regular elements a and b is regular since if ab is a
zero divisor, then so is one of a and b. If A is an integral domain, then every nonzero
element is regular.

Lemma 3.8.5. Let M be an A-module and T (M) its torsion submodule. Then the
following holds true.

(1) The subset T (M) is a submodule of M.

(2) The quotient M/T (M) is torsion-free.

(3) If M is free, then M is torsion-free.

Proof. We begin with (1). Let m,n ∈ T (M) and a,b ∈ A regular such that a.m = b.n = 0.
Then ab is regular, and (ab).(m+n) = (ab).m+(ab).n = 0 shows that m+n ∈ T (M).
For c ∈ A, we have (ca).m = c.(a.m) = 0. This shows that T (M) is a submodule. Thus
(1).
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We continue with (2). Let [m] ∈ M/T (M) be the residue class of m ∈ M and
a ∈ A regular. If a.[m] = 0, then a.m ∈ T (M). Thus there is a regular b ∈ A such that
(ba).m = b.(a.m) = 0. Since ba is regular, this shows that m ∈ T (M) i.e. [m] = [0]. We
conclude that M/T (M) is torsion-free. Thus (2).

We continue with (3). Consider b.m = 0 for m ∈M and b ∈ A regular. Let B be a
basis of M. Then m = ∑av.v for a unique (av) ∈

⊕
v∈BA. Since 0 = b.m = ∑(bav).m,

we have bav = 0 for all v ∈B. Since b is regular, av = 0 for all v ∈B, which shows that
m = 0. Thus M is torsion-free, which shows (3).

Example 3.8.6. We discuss some examples.

(1) If I is an ideal of A that contains a regular element a, then as an A-module, A/I
is a torsion module since a.[m] = [a.m] = [0] for all [m] ∈ A/I. However, as an
A/I-module, A/I is free and therefore torsion-free.

(2) The torsion submodule of a Z-module M is the subset T (M) = {m ∈M | a.m =
0 for some integer m > 0} of M.

(3) The additive group of Q is a torsion-free Z-module that is not free. The proof is
left as Exercise 3.18.

(4) Let K be a field, M a K[T ]-module that is finite dimensional as a K-vector space
and m ∈M. Then the kernel of the homomorphism fm : K[T ]→M that sends a
to a.m is of infinite dimension over K and contains a regular element a. Thus
a.m = fm(a) = 0 shows that m ∈ T (M). This shows that M is a torsion module.

3.9 Modules over principal ideal domains
In this section, we prove some profound theorems about modules over principal ideal
domains: the elementary divisor theorem, the Smith normal form and the structure
theorem for finitely generated modules over principal ideal domains. These three
theorems are closely related and can be deduced from each other easily.

To begin with, we establish some auxiliary results. Throughout the rest of this
chapter, we let A be a principal ideal domain.

Lemma 3.9.1. Let M be a free A-module of finite rank r and N a submodule of M. Then
N is free of rank s6 r.

Proof. We prove the claim by induction on r. If r = 0, there is nothing to prove.
Let r > 0. Let B = {v1, . . . ,vr} be a basis of M and M′ = 〈v1, . . . ,vr−1〉, which is

free of rank r−1. By the inductive hypothesis, N′ = N∩M′ is a submodule of M′ that
is free of rank s′ 6 r−1. We have

N = N/N′ = N/(N∩M′) ∼−→ (N +M′)/M′ ⊂ M/M′ ' A

by the second isomorphism theorem (Theorem 3.4.3). Under these inclusions and
isomorphisms, N corresponds to an ideal I = 〈a〉 of A.
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If a = 0, then N = {0}, and N = N′ is free of rank s = s′ 6 r−1, as desired. If a 6= 0,
then multiplication by a defines an isomorphism ma : A→ 〈a〉 of A-modules, which
shows that N ' A as A-modules.

By Exercise 3.14, the free A-module N is projective and the short exact sequence
0→ N′→ N → N → 0 splits, which shows that N ' N′⊕N. Thus N is free of rank
r = r′+16 (r−1)+1 = r, which concludes the proof of the lemma.

Lemma 3.9.2. Let s> 0 be an integer and d1, . . . ,ds ∈ A such that 〈0〉 6= 〈d1〉 ⊂ . . .⊂
〈ds〉 6= 〈1〉. Then s and the ideals 〈d1〉, . . . ,〈ds〉 are uniquely determined by the A-module
∏s

i=1 A/〈di〉.
Proof. Every prime ideal p of A is principal, i.e. p = 〈p〉 for a prime element p ∈ A.
Thus pk = 〈pk〉, which allows us to express the order of an element d ∈ A in a prime
ideal p as ordp(d) = max{k | d ∈ pk} and to write 〈d〉= ∏pordp(d) where the product
is taken over all prime ideals p for which ordp(d) 6= 0; cf. section 1.7. Therefore the
uniqueness of the ideals 〈d1〉, . . . ,〈ds〉 follows if we can express the orders ordp(di) in
terms of the A-module M = ∏s

i=1 A/〈di〉 for every prime ideal p. We will achieve this as
follows.

Let p ∈ A be prime, p= 〈p〉 and k> 0 an integer. Then pkN = {pk.n | n ∈ N} for an
A-module N, and thus the A-linear map

fp,k : A/〈d〉 −→ pk(A/〈d, pk+1〉)
ā 7−→ pk.ā

is surjective. By Lemma 1.6.8, 〈d, pk+1〉= gcd(d, pk+1), and thus fp,k(ā)= 0̄ if and only
if pka ∈ gcd(d, pk+1). Thus ker fp,k = A/〈d〉 if ordp(d)6 k and ker fp,k = 〈p〉+ 〈d〉=
p/〈d〉 if ordp(d)> k where we use the notation p/〈d〉 of the third isomorphism theorem
(Theorem 3.4.4). Thus if ordp(d)6 k, then pk(A/〈d, pk+1〉) = 0, and otherwise

pk(A/〈d, pk+1〉) ' (A/〈d〉)/(p/〈d〉) ' A/p.

Note that k(p) = A/p is a field since p= 〈p〉 is a maximal ideal as a nonzero prime ideal
in a principal ideal domain. Using Proposition 3.7.9 and Lemma 3.3.4.(4), we conclude
that

pk(M /pk+1M
)
' pk(M⊗A (A/pk+1)

)
'

s

∏
i=1

pk
((

A/〈di〉
)
⊗A
(
A/pk+1))

'
s

∏
i=1

pk(A/〈di, pk+1〉
)

is a k(p)-vector space whose dimension equals the number of di’s with ordp(di)> k+1.
Since 〈d1〉 ⊂ . . .⊂ 〈ds〉, we have ordp(ds)6 · · ·6 ordp(d1), and thus

vp(di) = min
{

k ∈ N
∣∣∣ dimk(p) p

k(M
/
pk+1M

)
< i
}
.

This formula shows that vp(di) is determined by M = ∏s
i=1 A/〈di〉. Note that since

〈d1〉 6= 〈1〉, the element d1 is divisible by a prime element p ∈ A. Thus for p= 〈p〉,
s = dimk(p)(M/pM)

determines s, which completes the proof of the lemma.
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The elementary divisor theorem
Theorem 3.9.3 (Elementary divisor theorem). Let M be a free A-module of finite rank
r and N a submodule of M. Then there is a basis B = {v1, . . . ,vn} of M, an s 6 r
and elements d1, . . . ,ds ∈ A such that {d1.v1, . . . ,ds.vs} is a basis for N and such that
〈0〉 6= 〈d1〉 ⊂ . . .⊂ 〈ds〉. Moreover, the integer s and the ideals 〈d1〉, . . . ,〈ds〉 are uniquely
determined by the submodule N of M.

Remark. The elementary divisor theorem was first proven by Schering who calls the
elements d1, . . . ,ds the elementary divisors of N. The term ’elementary divisor’ was
introduced by Weierstrass who used it, in a slightly different context, for prime powers
as they appear in the structure theorem for finitely generated A-modules (Theorem
3.9.5). Throughout the literature, there is a certain inconsistency in the usage of the
term ’elementary divisor’, but nowadays it more common to use it for the alluded prime
powers, and to call the elements d1, . . . ,ds the invariants of N. We shall follow this latter
convention in our lecture notes.

Proof. We prove the existence claim by induction on r. The claim is trivial for r = 0.
Let r > 0. If N = {0}, the claim is trivial. Thus we may assume that N is not

trivial. A homomorphism f : M→ A of A-modules maps N to a submodule I f of A,
which is an ideal of A. Let g : M→ A be a homomorphism such that Ig is maximal in
{I f | f : M→ A} with respect to inclusion. Since A is a principal ideal domain, Ig = 〈dg〉
for some dg ∈ Ig, i.e. dg = g(vg) for some vg ∈ N.

We claim that f (vg) ∈ Ig for every A-linear map f : M→ A. Indeed, let f : M→ A
be an A-linear map, a = f (vg) and d a greatest common divisor of a and dg. Then
〈d〉= gcd(a,dg) contains both 〈a〉 and Ig = 〈dg〉. By Lemma 1.6.8, we have d = ba+cdg
for some b,c ∈ A. Thus f ′(vg) = ba+ cdg = d for f ′ = b f + cg, which shows that
〈d〉 ⊂ I f ′ . Thus Ig ⊂ 〈d〉 ⊂ I f ′ , which must be equalities by the maximality of Ig. We
conclude that 〈a〉 ⊂ 〈d〉= Ig, which verifies our claim.

Next we claim that Ig 6= 〈0〉. Indeed, choose a basis B̃ for M and consider the
A-linear maps

fw : M −→ A
∑

v∈B̃
av.v 7−→ aw

for w ∈ B̃. Since N 6= {0} by assumption, it contains a nonzero element n = ∑v∈B̃ cv.v,
i.e. cw 6= 0 for some w∈B. Then fw(n) = cw 6= 0, which shows that I fw properly contains
〈0〉. Since Ig is maximal, it cannot be equal to 〈0〉, which verifies our claim.

Write vg = ∑v∈B̃ dv.v. Then dw = fw(vg) ∈ Ig = 〈dg〉, i.e. dv is divisible by dg for
all v ∈ B. Thus there is an element wg ∈ M such that vg = dg.wg. This means that
dg = g(vg) = dg ·g(wg) and thus g(wg) = 1 since 〈dg〉= Ig 6= 〈0〉.

Next we claim that the A-linear map

h : 〈wg〉A⊕kerg −→ M
(a.wg, m) 7−→ a.wg +m

is an isomorphism. Indeed, h is injective since g(a.wg) = a ·g(wg) = a and thus 〈wg〉A∩
kerg = {a.wg ∈M | a = 0}= {0}. To show that surjectivity of h, we consider m ∈M
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and define m′ = m− g(m).wg. Then g(m′) = g(m)− g(m) · g(wg) = 0, i.e. m′ ∈ kerg.
Thus m = h

(
g(m).wg,m′

)
, which shows that h is surjective and verifies our claim.

By Lemma 3.9.1, M′ = kerg is a free submodule of M. Since 〈wg〉A∩N = 〈vg〉A, by
the maximality of g, we have N = 〈vg〉A⊕N′ for the submodule N′ = kerg∩N of M′.

Since r = rk M equals rk (〈wg〉A⊕kerg) = 1+ rk M′, we have rk M′ = r−1. Thus
by the inductive hypothesis, there is a basis B′ = {v1, . . . ,vr−1} of M′, an s 6 r and
elements d1, . . . ,ds−1 ∈ A such that {d1.v1, . . . ,ds−1.vs−1} is a basis for N and such
that 〈d1〉 ⊂ . . . ⊂ 〈ds−1〉. Since d1.v1 is contained in a basis, we have d1 6= 0 and
thus 〈0〉 6= 〈d1〉. Let vs = wg and ds = dg. Then B = {v1, . . . ,vs} is a basis of M and
{d1.v1, . . . ,ds.vs} is a basis of N with s6 r, as required.

What is left to prove is that 〈ds−1〉 ⊂ 〈ds〉. Let f : M→ A be the A-linear map with
f (∑ci.vi) = ∑ci and let d ∈ A be a greatest common divisor of ds−1 and ds. Then 〈d〉=
gcd{ds−1,ds} contains both 〈ds−1〉 and 〈ds〉. By Lemma 1.6.8, we have d = cs−1ds−1 +
csds for some cs−1,cs ∈ A. Thus f

(
(cs−1ds−1).vs−1 +(csds).vs

)
= cs−1ds−1 + csds = d,

and thus Ig ⊂ 〈d〉 ⊂ I f . By the maximality of Ig = 〈ds〉, these inclusions are equalities
and thus 〈ds−1〉 ⊂ 〈d〉= 〈ds〉, which verifies our claim. This completes the proof of the
existence claim of the theorem.

We turn to the uniqueness of s and the ideals 〈d1〉, . . . ,〈ds〉. By Proposition 3.8.2,
the rank s of the free A-module N is uniquely determined. Let B = {v1, . . . ,vr} and
d1, . . . ,ds be as described in the theorem. Then

M/N ' Ar−s×
s

∏
i=1

A/〈di〉 and T (M/N) '
s

∏
i=1

A/〈di〉.

Note that d1 6= 0 since d1.v1 belongs to a basis of N. Let t 6 s be the integer such
that 〈dt〉 6= 〈dt+1〉 = . . . = 〈ds〉 = 〈1〉. Then T (M/N) ' ∏t

i=1 A/〈di〉 and 0 6= 〈d1〉 ⊂
. . .〈dt〉 6= 〈1〉. By Lemma 3.9.2, the integer t and the ideals 〈d1〉, . . . ,〈dt〉 are uniquely
determined by T (M/N). From this and the knowledge of s, we necessarily obtain
〈dt+1〉= . . .= 〈ds〉= 〈1〉, which proves that s and the ideals 〈d1〉, . . . ,〈ds〉 are uniquely
determined by the submodule N of M. This concludes the proof of the theorem.

The Smith normal form
Theorem 3.9.4 (Smith normal form). Let M and N be free A-modules of finite rank r and
s, respectively, and f : M→ N a homomorphism. Then there are bases {v1, . . . ,vr} of M
and {w1, . . . ,ws} of N, an integer t with 06 t 6min{r,s} and elements d1, . . . ,dt ∈ A
with 〈0〉 6= 〈d1〉 ⊂ . . .⊂ 〈dt〉 such that

f
( r

∑
i=1

ai.vi

)
=

t

∑
i=1

(diai).wi.

Moreover, the integer t and the ideals 〈d1〉, . . . ,〈dt〉 are uniquely determined by f : M→
N.

Remark. The ideals 〈d1〉, . . . ,〈dt〉 are called the invariants of f . The central claim of
Theorem 3.9.4 can be expressed by saying that there are ordered bases for M and N such
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that f can be represented by a matrix of the form



d1
. . .

dt

0

0 0




where the zeros stay for matrix blocks of appropriate sizes whose coefficients are all
zero.

Proof. By the elementary divisor theorem (Theorem 3.9.3), there is a basis {w1, . . . ,ws}
of N, an integer t 6 s and elements d1, . . . ,dt ∈ A with 〈0〉 6= 〈d1〉 ⊂ . . .⊂ 〈dt〉 such that
{d1.w1, . . . ,dt .wt} is a basis for the submodule im f of N. In particular, im f is free. By
Exercise 3.14, im f is projective and the short exact sequence 0→ ker f →M→ im f →
0 splits, i.e. there is a section s : im f →M to f : M→ im f and M = ker f ⊕s(im f ). As
a consequence, the elements vi = s(di.wi) for i = 1, . . . , t form a basis of the submodule
s(im f ) of M.

By the elementary divisor theorem (Theorem 3.9.3), the submodule ker f of M is
free. Since rk M = rk (ker f )+ rk (im f ), we have rk ker f = r− t. Let {vt+1, . . . ,vr}
be a basis of ker f . Then {v1, . . . ,vr} is a basis for M. By construction, we have
f (∑r

i=1 ai.vi) = ∑t
i=1(diai).wi.

Since t and 〈d1〉, . . . ,〈dt〉 are determined by the submodule im f of N, their unique-
ness follows at once from the elementary divisor theorem (Theorem 3.9.3).

The structure theorem for finitely generated modules
Recall from Definition 3.1.1 that an A-module M is finitely generated if M = 〈S〉A for a
finite subset S of M.

Theorem 3.9.5 (Structure theorem for finitely generated modules). Let M be a finitely
generated A-module. Then there are integers r,s, t,e1, . . . ,et > 0, elements d1, . . . ,ds ∈ A
and prime elements p1, . . . , pt ∈ A such that 〈0〉 6= 〈d1〉 ⊂ . . .⊂ 〈ds〉 6= 〈1〉 and

M ' Ar×
s

∏
i=1

A/〈di〉 ' Ar×
t

∏
i=1

A/〈pei
i 〉.

Moreover, r,s, t and the ideals 〈d1〉, . . . ,〈ds〉 and 〈pe1
1 〉, . . . ,〈p

et
t 〉 are uniquely determined,

up to a simultaneous permutation of the indices of the pi and ei.

Remark. The ideals 〈d1〉, . . . ,〈ds〉 are called the invariants of M and the prime powers
pe1

1 , . . . , pet
t are called the elementary divisors of M.

Proof. Let {m1, . . . ,mr̃} be a set of generators of M. Then the homomorphism

f : Ar̃ −→ M
(ai) 7−→ ∑ai.mi
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is surjective. By the elementary divisor theorem (Theorem 3.9.3), there is a basis
{v1, . . . ,vr̃} of Ar̃, an integer s̃> 0 and d1, . . . ,ds̃ ∈ A with 〈0〉 6= 〈d1〉 ⊂ . . .⊂ 〈ds̃〉 such
that {d1.w1, . . . ,ds̃.ws̃} is a basis of ker f . By the first isomorphism theorem (Theorem
3.4.1), we have

M ' Ar̃/ker f ' Ar̃−s̃×
s̃

∏
i=1

A/〈di〉.

Let r = r̃− s̃ and let s be the integer for which 〈ds〉 6= 〈ds+1〉 = . . . = 〈ds̃〉 = 1. Then
〈0〉 6= 〈d1〉 ⊂ . . .⊂ 〈ds〉 6= 〈1〉. Since A/〈di〉= {0} for i = s+1, . . . , s̃, we gain the first
isomorphism

M ' Ar×
s

∏
i=1

A/〈di〉

of the theorem. Let d be an integer with factorization d = pe1
1 · · · p

et
t into prime powers,

i.e. p1, . . . , pt ∈ A are pairwise distinct prime elements. Then 〈pei
i 〉 and 〈pe j

j 〉 are coprime
for i 6= j since 〈pei

i 〉+ 〈p
e j
j 〉 = gcd(pei

i , pe j
j ) = 〈1〉, and thus the Chinese remainder

theorem (Theorem 1.5.5) implies that A/〈d〉 '∏A/〈pei
i 〉. Applying this to all factors

A/〈di〉 in the expression M ' Ar×∏s
i=1 A/〈di〉 yields the second isomorphism of the

theorem.
We turn to the uniqueness claims. The integer r is uniquely determined by the

rank of M/T (M)' Ar. The ideals 〈d1〉, . . . ,〈ds〉 are uniquely determined by T (M)'
∏s

i=1 A/〈di〉, as shown in Lemma 3.9.2.
In the following, we show that the ideals 〈pe1

1 〉, . . . ,〈p
et
t 〉 determine uniquely the

integer s and the ideals 〈d1〉, . . . ,〈ds〉, which implies the uniqueness of t and the ideals
〈pe1

1 〉, . . . ,〈p
et
t 〉.

To explain the idea: since vp(d1)> . . .> vp(ds) for all prime ideals p, the ideal 〈d1〉
is determined as the product of the ideals 〈pei

i 〉 with the highest exponents ei for every
association class [pi] = {p j|p j ∼ pi} of prime elements in {p1, . . . , pt}. Successively,
we define 〈d2〉 as the product of the ideals 〈pei

i 〉 with the second highest exponents ei,
and so forth. We make this precise as follows.

Assume that ∏s
i=1 A/〈di〉 ' ∏t

i=1 A/〈pei
i 〉 for elements d1, . . . ,ds ∈ A with 〈0〉 6=

〈d1〉 ⊂ . . .⊂ 〈ds〉 6= 〈1〉. Let P= {〈p1〉, . . . ,〈pt〉} be the set of prime ideals generated
by the prime elements p1, . . . , pt . Let

µp = #
{

i ∈ {1, . . . , t}
∣∣〈pi〉= p

}

be the multiplicity of the occurrence of a prime ideal p in (〈p1〉, . . . ,〈pt〉) and s′ =
max{µp | p∈P} be the maximal multiplicity that occurs. Since A/〈pei

i 〉×A/〈pe j
j 〉 is not

cyclic if 〈pi〉= 〈p j〉, we conclude that s> s′. On the other hand, if 〈ds〉 ⊂ 〈pei
i 〉= pei ,

then 〈di〉 ⊂ 〈ds〉 ⊂ pei for all i = 1, . . . ,s. Since 〈d1〉 6= 〈1〉, we must have s6 µp 6 s′ for
some p ∈ P, which shows that s = s′. Thus s is determined by the ideals 〈pe1

1 〉, . . . ,〈p
et
t 〉.

In order to determine the ideals 〈d1〉, . . . ,〈ds〉, we define for p ∈ P and k = 1, . . . ,s
the integer

ep,k = max
{

e ∈ N
∣∣∣e = 0 or #

{
i ∈ {1, . . . , t}

∣∣〈pi〉= p, ei > e
}
> k
}
,
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which is the k-th largest exponent ei occurring among those ideals 〈pei
i 〉 for which

〈pi〉= p unless there are less than k such ideals, in which case ep,k = 0. This notation
allows us to reorder the ideals 〈pe1

1 〉, . . . ,〈p
et
t 〉 into increasing chains pep,1 ⊂ . . .⊂ pep,s

for every p ∈ P such that the proper ideals in these chains are precisely the ideals
〈pe1

1 〉, . . . ,〈p
et
t 〉. Since for k6 l, the inclusion 〈dl〉 ⊂ pei implies that 〈dk〉 ⊂ pe j for some

e j > ei, we conclude that we must have

〈di〉 = ∏
p∈P

pep,i

for i = 1, . . . ,s. This shows that the ideals 〈d1〉, . . . ,〈ds〉 and the ideals 〈pe1
1 〉, . . . ,〈p

et
t 〉

determine each other. Thus the uniqueness of t and 〈pe1
1 〉, . . . ,〈p

et
t 〉 follows from the

uniqueness of s and 〈d1〉, . . . ,〈ds〉, which concludes the proof of the theorem.

Applications
Recall from Definition 3.1.1 that an A-module is cyclic if it is generated by a single
element.

Corollary 3.9.6. Let M be a finitely generated A-module. Then M is the direct sum of
finitely many cyclic submodules.

Proof. Let M be a finitely generated A-module. By the structure theorem of finitely
generated modules (Theorem 3.9.5), there is an isomorphism M '∏s

i=1 A/〈di〉 for some
r,s ∈ Z and some nonunits d1, . . . ,ds ∈ A, which we allow to be 0, which accounts for
the factors A = A/〈0〉. Composing its inverse with the canonical isomorphism from the
finite direct sum with the finite product yields an isomorphism

f :
s⊕

i=1

A/〈di〉 ∼−→
s

∏
i=1

A/〈di〉 ∼−→ M

Since A/〈d j〉 is generated by 1̄, its image N j = f ◦ ι j(A/〈d j〉) in M is generated by
f ◦ ι j(1̄) where ι j : A/〈d j〉 →

⊕s
i=1 A/〈di〉 is the canonical inclusion. Thus M is the

direct sum
⊕s

i=1 Ni of the cyclic submodules Ni of M.

Corollary 3.9.7. A finitely generated A-module is free if and only if it is torsion-free.

Proof. By Lemma 3.8.5, free modules are torsion-free. Conversely, assume that M is
torsion-free. By the structure theorem for finitely generated A-modules (Theorem 3.9.5),
M = Ar×∏A/〈dr〉 for certain nonzero elements d1, . . . ,ds ∈ A. Since T (M)'∏A/〈di〉
is trivial, we conclude that M ' Ar is free.

Corollary 3.9.8. Let M be a finitely generated A-module and N a submodule of M. Then
N is finitely generated.
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Proof. Let {v1, . . . ,vr} be a set of generators for M. Then the A-linear map

f :
r⊕

i=1

A −→ M

(ai) 7−→ ∑ai.vi

is surjective. By Lemma 3.9.1, the submodule N′= f−1(N) of the free A-module
⊕r

i=1 A
is free of rank s6 r. Let {w1, . . . ,ws} be a basis of N′. Then { f (w1), . . . , f (ws)} is a set
of generators for N, which shows that N is finitely generated.

The structure theorem for finitely generated abelian groups
Definition 3.9.9. An abelian group G is finitely generated if it is finitely generated as a
Z-module.

Theorem 3.9.10 (Structure theorem for finitely generated abelian groups). Let G be a
finitely generated abelian group. Then there exist integers r,s, t,d1, . . . ,ds,e1, . . . ,et > 0
and prime numbers p1, . . . , pt > 0 such that 〈d1〉 ⊂ . . .⊂ 〈ds〉 and

G ' Ar×
s

∏
i=1

Z/〈di〉 ' Ar×
t

∏
i=1

Z/〈pei
i 〉.

Moreover, the integers r,s, t,d1, . . . ,ds,e1, . . . ,et and the prime numbers p1, . . . , pt are
uniquely determined up to a simultaneous permutation of the indices of pi and ei.

Proof. Once we have observed that every ideal of Z has a unique nonnegative generator,
this follows immediately from the structure theorem of finitely generated A-modules
(Theorem 3.9.5), applied to A = Z.

The Jordan normal form
In order to explain how the theorem of the Jordan normal form follows from the structure
theorem of finitely generated A-modules, we recall some facts from linear algebra. For
the rest of this section, let K be a field.

Let M be a finitely dimensional K-vector space of dimension r and ϕ : M→M a K-
linear endomorphism. Let B= {v1, . . . ,vr} be a basis of M over K. Then ϕ

(
∑ai.vi

)
=

U · (ai) for some r× r–matrix U with coefficients in K where we consider (ai) as a
row vector. The characteristic polynomial of ϕ is the monic polynomial Charϕ =
det(idM ·T −U) of degree r, which is independent from the choice of basis B and thus
a well-defined invariant of the automorphism ϕ of M.

For i> 0, we define the K-linear map ϕi : M→M as ϕ0 = idM if i = 0 and

ϕi = ϕ◦ · · · ◦ϕ︸ ︷︷ ︸
i-times
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if i > 0. For a polynomial f = ∑ciT i in K[T ], we define the K-linear map f (ϕ) : M→M
by
(

f (ϕ)
)
(m) = ∑ci.ϕ

i(m). The action

K[T ]×M −→ M
( f ,m) 7−→

(
f (ϕ)

)
(m)

of K[T ] on M endows M with the structure of a K[T ]-module. We leave the verification
of the axioms of an K[T ]-module as an exercise. Since M is finite dimensional as a
K-vector space, M is finitely generated as a K[T ]-module.

Note that by the very definition of the K[T ]-action, ϕ(m) = T.m for all m ∈M. This
means that a K[T ]-module M is essentially the same thing as a K-vector space M together
with an endomorphism ϕ : M→M.

Theorem 3.9.11 (Cayley-Hamilton theorem). Let M be a finite dimensional K-vector
space and ϕ : M→M be a K-linear endomorphism. Then Charϕ(ϕ) = 0.

Proof. For the sake of completeness, we recall the idea of the proof. Let B= {v1, . . . ,vr}
be a basis for M and U be the matrix that represents ϕ in the basis B, i.e. ϕ(vi)=∑Ui, j.v j.
Let V be the r× r–matrix of endomorphisms of M with coefficients Vi, j = δi, jϕ−Ui, j
where δi, j is the Kronecker symbol. Then V #V = det(V ) =Charϕ(ϕ) as endomorphisms
of M where V # is the adjoint matrix of V . Since V : vi 7→∑r

j=1
(
δi, jϕ(v j)−Ui, j(v j)

)
= 0

for all i = 1, . . . ,r, we conclude that V #V is the trivial map, and thus Charϕ(ϕ) = 0.

Let K[ϕ] = { f (ϕ) | f ∈ K[T ]} be the K-algebra of endomorphism of M that is
generated by ϕ. Let π : K[T ]→ K[ϕ] be the homomorphism that sends T to ϕ. By the
Cayley -Hamilton theorem (Theorem 3.9.11), the characteristic polynomial of ϕ is in
the kernel of π. Thus kerπ is not trivial and K[ϕ] is finite dimensional over K.

Every nonzero ideal I of the principal ideal domain K[T ] is generated by a unique
monic polynomial since the unit group K[T ]× = K× coincides with the choice of the
leading coefficient of a generator for I. The minimal polynomial of ϕ is defined as the
unique monic generator Minϕ of kerπ. Since Minϕ ∈ kerπ, we have Minϕ(ϕ) = 0.
Since Charϕ ∈ kerπ = 〈Minϕ〉, the minimal polynomial Minϕ divides the characteristic
polynomial Charϕ.

Theorem 3.9.12 (Structure theorem for finite dimensional K[T ]-modules). Let M be a
finite dimensional K-vector space and ϕ : M→M be a K-linear endomorphism. Then
there are integers s, t,e1, . . . ,et > 0, monic polynomials f1, . . . , fs with 〈0〉 6= 〈 f1〉 ⊂
. . .⊂ 〈 fs〉 6= 〈1〉 and monic irreducible polynomials g1, . . . ,gt such that

M '
s

∏
i=1

K[T ]/〈 fi〉 '
t

∏
i=1

K[T ]/〈gei
i 〉

as K[T ]-modules. Moreover, the integers s, t and the polynomials f1, . . . , fs,g1, . . . ,gt
are uniquely determined by M, up to a simultaneous permutation of the indices of the gi
and ei. The characteristic polynomial of ϕ is equal to Charϕ = ∏s

i=1 fi and the minimal
polynomial of ϕ is equal to Minϕ = f1.
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Proof. Since a finite dimensional K[T ]-module is a torsion module, cf. Example 3.8.6,
and since every nonzero ideal of K[T ] is generated by a unique monic polynomial,
everything follows at once from the structure theorem of finitely generated A-modules
(Theorem 3.9.5) applied to A = K[T ], but for the claims that Charϕ = ∏s

i=1 fi and
Minϕ = f1. We will verify the latter claim in the following and leave the former claim
as Exercise 3.25.

By what we have proven, we can assume that M = ∏s
i=1 K[T ]/〈 fi〉. Since both f1

and Minϕ are monic, it is enough to show that 〈Minϕ〉 = 〈 f1〉. Since f1 ∈ 〈 fi〉 for all
i = 1, . . . ,s, we have for all m =

(
[h1], . . . , [hs]

)
∈M that

f1(ϕ).m =
(
[ f1h1], . . . , [ f1hs]

)
=
(
[0], . . . , [0]

)
= 0,

and thus f1 ∈ 〈Minϕ〉. Conversely, we have
(
[Minϕ], . . . , [Minϕ]

)
= Minϕ(ϕ).1 = 0 =

(
[0], . . . , [0]

)

as elements of ∏s
i=1 K[T ]/〈 fi〉, and thus Minϕ ∈ 〈 f1〉. Thus 〈Minϕ〉 = 〈 f1〉, which

completes the proof.

For λ ∈ K, we define the Jordan block (of size e) as the e× e–matrix




λ

1 . . .
. . . . . .

1 λ




whose coefficients below and above the two diagonals with entries are all zero.

Theorem 3.9.13 (Jordan normal form). Let M be a K-vector space of finite dimension r
and ϕ : M→M be a K-linear endomorphism whose minimal polynomial Minϕ factors
in K[T ] into linear factors, i.e. Minϕ = ∏s

i=1(T − ai) for some a1, . . . ,as ∈ K where
s = deg(Minϕ). Then there is a basis B of M, integers t,e1, . . . ,et > 0 and λ1, . . . ,λt ∈
{a1, . . . ,as} such that ϕ is represented in the basis B by the matrix




Je1(λ1)
. . .

Jet (λt)




that has Jordan blocks Jei(λi) on its diagonals and zero coefficients outside the diag-
onal blocks. Moreover, the integers s,e1, . . . ,et > 0 and λ1, . . . ,λt ∈ K are uniquely
determined by ϕ up to a simultaneous permutation of the indices of the ei and λi.

Proof. By the structure theorem for finite dimensional K[T ]-modules (Theorem 3.9.12),
there are integers s,e1, . . . ,et and irreducible monic polynomials f1, . . . , ft ∈ K[T ]
such that M ' ∏s

i=1 K[T ]/〈 f ei
i 〉 as K[T ]-modules, which allows us to assume that
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M = ∏s
i=1 K[T ]/〈 f ei

i 〉 where ϕ acts as T , i.e. ϕ
(
[g1], . . . , [gt ]

)
=
(
[T · g1], . . . , [T · gt ]

)
.

Since Minϕ(ϕ) acts trivial on M by the very definition of Minϕ, we have
(
[Minϕ], . . . , [Minϕ]

)
=
(
Minϕ(ϕ)

)
.([1], . . . , [1]

)
=
(
[0], . . . , [0]

)

as elements of ∏s
i=1 K[T ]/〈 f ei

i 〉, which shows that Minϕ ∈ 〈 f ei
i 〉 for i = 1, . . . ,s. Thus

for every i ∈ {1, . . . ,s}, the polynomial fi divides Minϕ = ∏r
j=1 T − a j. Since fi is

irreducible, we conclude that fi = T −λi for some λi ∈ {a1, . . . ,as}.
Since ϕ leaves the submodules Mi = K[T ]/〈(T − λi)

ei〉 of M invariant, we can
concentrate on finding appropriate matrix representations Ui for the restrictions ϕi :
Mi→Mi of ϕ to the submodules Mi. Putting the bases of the Mi together to a basis of
M yields a matrix representation for ϕ whose diagonal blocks are the matrices Ui and
whose other coefficients are all 0.

Consider the basis Bi =
{
[1], [T − λi], . . . , [(T − λi)

ei−1]
}

of Mi. Since for k =
0, . . . ,ei−1,

ϕi.
[
(T −λi)

k] =
[
T (T −λi)

k] =
[
(T −λi)(T −λi)

k +λi(T −λi)
k]

= 1.
[
(T −λi)

k+1]+λi.
[
(T −λi)

k]

and since
[
(T −λi)

ei
]
= [0], the endomorphism ϕi is represented in the basis Bi by

the Jordan block Ui = Jei(λi). Thus ϕ is represented in the basis B =
⋃s

i=1Bi of
M =

⊕s
i=1 Mi by the matrix as described in the theorem.

Since the integers s,e1, . . . ,et > 0 and λ1, . . . ,λt ∈ K are determined by the K[T ]-
module M, the uniqueness claim follows at once from the structure theorem for finite
dimensional K[T ]-modules (Theorem 3.9.12).

Remark. If K is an algebraically closed field, then every polynomial is a product of
linear factors by Proposition 1.10.10 and thus every endomorphism ϕ : M→M of a
finite dimensional K-vector space M has a Jordan normal form.

This is not true if K is not algebraically closed. An example is the rotation ϕ :
R2→ R2 of the Euclidean plan R2 by 90◦, which is represented by the matrix

(
0 −1
1 0

)

in the standard unit basis. If ϕ had a Jordan normal form with respect to some basis
B= {v1,v2} of R2, then it would have an eigenvector, namely v1. However, the rotation
ϕ does not have an eigenvector, and thus cannot have a Jordan normal form.

In agreement with the lack of a Jordan normal form, we find that the minimal
polynomial Minϕ is in this case equal to the characteristic polynomial Charϕ = T 2 +1
of ϕ since T 2 +1 is irreducible in R[T ] and thus has no nontrivial divisors. In particular,
Minϕ is not a product of linear polynomials in R[T ].

3.10 Exercises
Exercise 3.1. Proof Lemma 3.3.4.

Exercise 3.2. Let {Mi}i∈I be a family of A-modules.
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(1) Show that ∏i∈I Mi together with the projections π j : ∏Mi→M j is the categorical
product in ModA.

(2) Show that
⊕

i∈I Mi together with the inclusions ι j : M j→
⊕

Mi is the categorical
coproduct in ModA.

Exercise 3.3. Verify the following assertions.

(1) Rn⊗RRm and Rm·n.

(2) A[T1]⊗A A[T2]' A[T1,T2] for any ring A.

(3) (Z/nZ)⊗Z (Z/mZ)' Z/dZ where d is a greatest common divisor of the natural
numbers m and n.

(4) K⊗Z L = {0} if K and L are fields of different characteristics.

(5) Q⊗ZQ'Q.

Exercise 3.4. Let M and N be A-modules. Show that HomA(M,N) is an A-module with
respect to the operations f +g : m 7→ f (m)+g(m) and a. f : m 7→ a. f (m) for a ∈ A and
f ,g ∈ HomA(M,N). Show that

HomA(M,N)×HomA(N,P) −→ HomA(M,P)
( f ,g) 7−→ g◦ f

is an A-bilinear homomorphism. Conclude that the association f ⊗g 7→ g◦ f describes
a homomorphism HomA(M,N)⊗HomA(N,P)→ HomA(M,P) of A-modules.

Exercise 3.5. Let M, N, N′ and P be A-modules and f : N→ N′ an A-linear homomor-
phism. Consider the associations

fM : M⊗A N −→ M⊗A N′, f ∗ : Hom(N′,P) −→ Hom(N,P)
m⊗n 7−→ m⊗ f (n) g 7−→ g◦ f

and f∗ : Hom(M,N) → Hom(M,N′).
h 7−→ f ◦h

(1) Show that fM is well-defined as a map and that all three maps are homomorphisms
of A-modules.

(2) Conclude that M⊗A (−), Hom(−,P) and Hom(M,−) are functors from ModA
to ModA. Which of them are covariant, which of them are contravariant?

Exercise 3.6. Let f : A→ B be a ring homomorphism.

(1) Show that sending an A-module M to B⊗A M and sending an A-linear map
α : M→M′ to the B-linear map αB : B⊗A M→ B⊗A M′ that is defined by αB(b⊗
m) = b⊗α(m) defines a functor B⊗A− : ModA→ModB.

(2) Show that a B-module N is A-module with respect to the action defined by a.n =
f (a).n for a ∈ A and n ∈ N. Show that a B-linear map α : N→ N′ is A-linear with
respect to this action. Conclude that this defines a functor F : ModB→ModA.
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(3) Show that the association b⊗n 7→ b.n defines a B-linear map ηN : B⊗AF(N)→N.

(4) Let M be an A-module and N a B-module. Show that the association

ΨM,N : HomA
(
M,F(N)

)
−→ HomB(B⊗A M,N)

γ : M→ F(N) 7−→ ηN ◦γB : B⊗A M→ N

is a well-defined bijection.

(5) Let α : M→M′ be an A-linear map and β : N→ N′ a B-linear map. Show that the
diagram

γ HomA
(
M′,F(N)

)
HomB(B⊗A M′,N) δ

F(β)◦γ ◦α HomA
(
M,F(N′)

)
HomB(B⊗A M,N′) β ◦ δ ◦αB

∈
ΨM′,N ∈

∈
ΨM,N′ ∈

commutes.

Remark: The functor B⊗A− : ModA→ModB is called the extension of scalars from A
to B and the functor F : ModB→ModA is usually called the restriction of scalars from
B to A. The properties (4) and (5) say that F is right-adjoint to B⊗A−.

Exercise 3.7 (Schur’s lemma for algebras over algebraically closed fields). Let K be an
algebraically closed field, A a K-algebra and V an irreducible A-module that is finite
dimensional as a K-vector space. Show that every A-linear map φ : V →V is of the form
φ(v) = a.v for some a ∈ K.

Exercise 3.8. Let K be a field and M = N = K2, considered as additive groups. Define
a map K[T ]×M→M by

(
∑aiT i

)
.(m,n) =

(
∑(aim) , ∑ain

)

and a map K[T ]×N→ N by
(
∑aiT i

)
.(m,n) =

(
∑(aim+ iain) , ∑ain

)

where ai,m,n ∈ k. Show that M and N are K[T ]-modules with respect to these maps.
Show that neither M nor N is simple, but that N is indecomposable while M is not.
Hint: T acts on M as the matrix

(1 0
0 1

)
, and it acts on N as the matrix

(1 1
0 1

)
.

Exercise 3.9. Let K be a field and M = N = k2 the K[T ]-modules from Exercise 3.8.
Let P = K.

(1) Show that the map K[T ]× P→ P with
(
∑aiT i).(m) = ∑ai.m turns P into a

K[T ]-module.

(2) Show that the inclusion a 7→ (a,0) into the first coordinate defines injective K[T ]-
linear maps i : P→M and j : P→ N.
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(3) Show that there are short exact sequences of the form

0−→ P i−→M
p−→ P−→ 0 and 0−→ P

j−→ N
q−→ P−→ 0

for some K[T ]-linear maps p and q.

(4) Which of these sequences are split?

Exercise 3.10. Let K be a field and 0→V1→ ··· →Vn→ 0 be an exact sequence of
K-vector spaces. Show that ∑(−1)i dimK Vi = 0.

Exercise 3.11.
Let A be a ring and f : M → N a homomorphism of A-modules that has a section
g : N→M, i.e. f ◦g = idN . Show that M ' ker f ⊕ img.

Exercise 3.12 (Short 5-lemma). Given a ring A and a commutative diagram

0 N M Q 0

0 N′ M′ Q′ 0

i

fN

p

fM fQ

i′ p′

of A-modules with exact rows, show that

(1) fM is a monomorphism if fN and fQ are monomorphisms,

(2) fM is an epimorphism if fN and fQ are epimorphisms, and

(3) fM is an isomorphism if fN and fQ are isomorphisms.

Exercise 3.13. Let A be a ring and f : M→ N a homomorphism of A-modules. Show
that

(1) f is a monomorphism if and only if it is injective;

(2) f is an epimorphism if and only if it is surjective;

(3) f is an isomorphism (in the sense of category theory, cf. Chapter 2) if and only if
it is bijective.

Exercise 3.14. Show that the following properties for an A-module P are equivalent.

(1) The functor Hom(P,−) is exact.

(2) There is an A-module Q such that P⊕Q is free.

(3) Every short exact sequence of A-modules of the form 0→ N→M→ P→ 0 splits.

(4) For every epimorphism p : M → Q of A-modules and every homomorphism
f : P→ Q, there is a homomorphism g : P→M such that f = p◦g.
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An A-module P with these properties is called projective. Conclude that every free
A-module is projective. Show that Z/2Z is a projective Z/6Z-module that is not free.

Remark: An A-module I is injective if Hom(−, I) is exact. It can be shown that there
are analogous characterizations as in (3) and (4) for injective modules. However, there is
no direct analogue to (2). For A = Z, one can show that a Z-module I is injective if and
only if it is divisible, i.e. for every m ∈ I and every integer l > 0 there exists an n ∈ I
such that l.n = m.

Exercise 3.15. Let A be a ring and P an A-module.

(1) Let M and N be A-modules and f : P⊗A M→ N a homomorphism. Show that
ΨM,N( f ) : m 7→

[
p 7→ f (m⊗ p)

]
defines an isomorphism

ΨM,N : HomA(P⊗A M,N) −→ HomA
(
M,HomA(P,N)

)

of A-modules whose inverse sends a homomorphism g : M→ HomA(P,N) to the
homomorphism P⊗A M→ N with p⊗m 7→

(
g(m)

)
(p).

(2) Let α : M→M′ and β : N→ N′ be homomorphisms. Show that the diagram

HomA
(
M′,HomA(P,N)

)
HomA(P⊗A M′,N)

HomA
(
M,HomA(P,N′)

)
HomA(P⊗A M,N′)

ΨM′,N

β∗◦−◦α β◦−◦αP

ΨM,N′

commutes where αP : P⊗A M→ P⊗A M′ and β∗ : HomA(P,N)→ HomA(P,N′)
are the homomorphisms that are induced by α and β, respectively.

Exercise 3.16. Let A be a ring and M1 and M2 A-modules.

(1) Show that the canonical injections ιk : Mk→M1⊕M2 and the canonical projections
πk : M1⊕M2→Mk (for k = 1,2) satisfy the relations

ι1 ◦π1 + ι2 ◦π2 = idM1⊕M2 and πk ◦ ιl =

{
idMk if k = l,
0 if k 6= l

for all k, l = 1,2.

(2) Let P be an A-module and ik : Mk → P and pk : P→ Mk homomorphisms for
k = 1,2 that satisfy the relations

i1 ◦ p1 + i2 ◦ p2 = idP and pk ◦ il =

{
idMk if k = l,
0 if k 6= l

for k, l = 1,2. Show that the homomorphism M1⊕M2→ P that is induced by
{ik : Mk→ P}k=1,2 is an isomorphism.
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(3) Let B be a ring and F : ModA→ModB an additive covariant functor. Show that
the homomorphism F(M1)⊕F(M2)→ F(M1⊕M2) that is induced by {F(ιk) :
F(Mi)→ F(M1⊕M2)}k=1,2 is an isomorphism.

(4) Let F : ModA → ModB be as before and 0→ N → M → Q→ 0 a split short
exact sequence. Show that 0→ F(N)→ F(M)→ F(Q)→ 0 is a split short exact
sequence.

Exercise 3.17. Let A and B be rings.

(1) Let M and N be A-modules and f ,g : M→ N homomorphisms. Show that the
homomorphism

M ∆−→ M⊕M
( f ,g)−→ N⊕N Σ−→ N

m 7−→ (m,m) (m,n) 7−→ m+n
(m,n) 7−→ f (m)+g(n)

is equal to f +g : M→ N.

(2) Let F : ModA → ModB be a covariant functor such that for all A-modules M1
and M2, the homomorphism F(M1)⊕F(M2)→ F(M1⊕M2) that is induced by
{F(ιk) : F(Mi)→F(M1⊕M2)}k=1,2 is an isomorphism where ιk : Mk→M1⊕M2
are the canonical inclusions. Show that F is additive.

Exercise 3.18. Show that the additive group of Q is a torsion-free Z-module. Show that
every free submodule of Q is cyclic, and show that the same is true for finitely generated
submodules of Q. Give an example of a proper submodule N (Q that is not cyclic.

Exercise 3.19. Let A be an integral domain.

(1) Show that T (M×N) ' T (M)×T (N). Conclude that for r > 0, nonzero ideals
I1, . . . , Is of A and M =Ar×∏s

i=1 A/Ii, we have T (M)'∏s
i=1 A/Ii and M/T (M)'

Ar.

(2) Show that a homomorphism f : M→N of A-modules restricts to a homomorphism
T (M)→ T (N) between their respective torsion modules. Show that this defines a
left exact functor T : ModA→ModA.

Exercise 3.20. (1) Let M = Z3 and N the submodule generated by (1,1,6) and
(1,−1,6). Determine the invariants of the submodule N. Determine the invariants
and the elementary divisors of M/N. What is the rank of (M/N)/T (M/N)?

(2) Let f : Z3→ Z3 be the Z-linear map given by multiplication of row vectors in Z3

with the matrix (1 2 3
4 5 6
7 8 9

)
.

Determine the Smith normal form and the invariants of f . Determine the invariants
and the elementary divisors of Z3/ im f . What is the rank of Z3/ im f divided by
its torsion submodule?
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(3) Let N be the submodule of Z4 that is generated by

(1,1,1,0), (1,1,0,1), (1,0,1,1), and (0,1,1,1).

Find a basis {v1, . . . ,v4} of Z4 and integers a1, . . . ,a4 such that {a1v1, . . . ,a4v4}
is a basis of N.

Exercise 3.21. An A-module M is flat if −⊗A M is exact.

(1) Show that every free A-module is flat. Conclude that every projective A-module is
flat.

(2) Let I be an ideal of A. Show that I⊗A M ' IM if M is flat.

Hint: For (1), Exercise 3.14 is useful. For (2), the proof of Proposition 3.7.9 is helpful.

∗Exercise 3.22. Let A be a principal ideal domain and r,s> 0 integers.

(1) Show that every A-linear map f : Ar→ As is of the form f (ai) =U · (ai) for some
r×s-matrix U with coefficients in A where U ·(ai) denotes the usual multiplication
of a matrix with a vector.

(2) Let B= {v1, . . . ,vr} be a subset of Ar and vi, j the j-th coordinate of vi for i, j =
1, . . . ,r. Show that B is a basis of Ar if and only if the r× r-matrix U with
coefficients Ui, j = vi, j is invertible.

(3) Show that there are for every r× s-matrix U an r× r-matrix V and an s× s-matrix
W such that D = WUV is in Smith normal form, i.e. there is an integer t with
06 t 6min{r,s} and elements d1, . . . ,dt ∈ A with 0 6= 〈d1〉 ⊂ . . .⊂ 〈dt〉 such that
Di,i = di for i = 1, . . . , t and Di, j = 0 if i 6= j or i = j > t.

(4) Exhibit invertible matrices V such that multiplying U with V from the right (from
the left) results in (a) multiplying a column (row) by a unit of A; (b) an exchange
of columns (rows); (c) adding a multiple of a column (row) to another. Such
matrices V are called elementary matrices.

(5) Let A be a Euclidean domain with Euclidean norm N : A→ N. Develop an
algorithm using elementary column and row operations to bring U into Smith
normal form.

Hint: One can refine the Gaussian algorithm appropriately using the Euclidean
norm for the pivot search. If a pivot does not divide all coefficients of a given
column and row, then one can produce a new pivot of smaller norm with the help
of the Euclidean algorithm.

Remark: An algorithm as in part (5) does not exist for principal ideal domains in general
since there are examples of invertible matrices that are not products of elementary
matrices.

Exercise 3.23. Let K be a field and A = K[T ] and consider M = Kn as an A-module by
letting T act as a complex n×n-matrix U . Show that M is a cyclic A-module if U has a
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Jordan normal form with only one Jordan block, i.e. if U is conjugated to a matrix of the
form 



λ

1 . . .
. . . . . .

1 λ




for some λ ∈ K.

Exercise 3.24. Consider the C[T ]-module M = C3 where T acts as one of the matrices

(1) T =



λ 0 0
0 λ 0
0 0 λ


 (2) T =



λ 0 0
1 λ 0
0 0 λ


 (3) T =



λ 0 0
1 λ 0
0 1 λ




(4) T =



λ 0 0
0 λ 0
0 0 µ


 (5) T =



λ 0 0
1 λ 0
0 0 µ


 (6) T =



λ 0 0
0 µ 0
0 0 ν




and where λ, µ and ν are pairwise distinct complex numbers. Determine in each case the
characteristic polynomial and the minimal polynomial of T , as well as the elementary
divisors and the invariant factors of M.

Exercise 3.25. Let K be a field, M a finite dimensional K-vector space and ϕ : M→M
a K-linear map. Let I1 = ( f1), . . . , Is = ( fs) be the invariant factors of M as K[T ]-module
where T acts as ϕ and where f1, . . . , fs are monic polynomials. Show that ∏s

i=1 fi is the
characteristic polynomial of ϕ.

Hint: Reduce the situation to the case where M is cyclic and use that in this case, the
characteristic polynomial equals the minimal polynomial.

Exercise 3.26. Let A be a ring and Matn×n(A) the set of n×n-matrices with coefficients
in A.

(1) Show that Matn×n(A) is a noncommutative ring with respect to matrix addition
and matrix multiplication. What are 0 and 1?

(2) Show that the inclusion f : A→ Matn×n(A) as diagonal matrices is a homo-
morphism of (noncommutative) rings, i.e. f (a+ b) = f (a) + f (b), f (a · b) =
f (a) · f (b) and f (1) = 1.

(3) The determinant is the map det : Matn×n(A) → A that sends a matrix T =
(ai, j)i, j=1,...,n to the element

det(T ) = ∑
σ∈Sn

sign(σ)
n

∏
i=1

ai,σ(i)

of A. Show that det is multiplicative, i.e. det(T · T ′) = det(T ) · det(T ′) and
det(1) = 1.



3.10. Exercises 115

(4) Show that a matrix T is a unit in Matn×n(A), i.e. T T ′ = 1 for some matrix T ′, if
and only if det(T ) is a unit in A.

Exercise 3.27. Let K be a field and M a finite dimensional K-vector space. A K-linear
map ϕ : M→M is called diagonalizable if it acts as a diagonal matrix with respect to
some basis of M. Show that ϕ is diagonalizable if and only if the minimal polynomial is
of the form

Minϕ =
n

∏
i=1

(T −αi)

for pairwise distinct α1, . . . ,αn ∈ K. Is the C-linear map ϕ : C2 → C2 given by the
matrix

(
1 −1
1 1

)
for the standard basis of C2 diagonalizable?

Exercise 3.28. Let K be a field, M and N finite dimensional K-vector spaces, and
ϕ : M→M and ψ : N→ N K-linear maps. Assume that their respective characteristic
polynomials factor as

Charϕ =
m

∏
i=1

(T −αi), and Charψ =
n

∏
j=1

(T −β j).

Show that the formula (ϕ⊗ψ)(m⊗n) =ϕ(m)⊗ψ(n) defines a K-linear homomorphism
ϕ⊗ψ : M⊗K N→M⊗K N, whose characteristic polynomial is

Charϕ⊗ψ = ∏
i, j

(T −αiβ j).





Chapter 4

Multilinear algebra

In this chapter, we introduce the tensor algebra, the symmetric algebra and the exterior
algebra of an A-module, and study their basic properties. Since many statements in this
chapter are similar in nature to previous results, and can be proven by similar techniques
as we have seen them already, we pass through this chapter with a faster pace and omit
several proofs.

4.1 Graded algebras
Let A be a (commutative) ring. In this chapter, we allow A-algebras to have a noncom-
mutative multiplication. More precisely, we use it in the following sense.

Definition 4.1.1. An A-algebra is a not necessarily commutative ring B together with
a ring homomorphism ιB : A→ B, which is a map such that ιB(1) = 1, ιB(a+ b) =
ιB(a)+ ιB(b) and ιB(ab) = ι(a)ιB(b) for all a,b ∈ A.

As usual, we suppress the ring homomorphism ιB : A→ B from the notation and
simply say that B is an A-algebra. Note that we require that the additive group of a (not
necessarily commutative) A-algebra B is commutative. In particular, this implies that B
is an A-module with respect to the A-action a.b = ιB(a)b for a ∈ A and b ∈ B.

Definition 4.1.2. A graded A-algebra is an A-algebra B together with a family {Bi}i∈N
of A-submodules Bi of B such that B =

⊕
i∈NBi, such that ιB(A) ⊂ B0 and such that

ab∈Bi+ j for all i, j ∈N, a∈Bi and b∈B j. Let B and C be graded A-algebras. A graded
homomorphism from A to B is a map f : B→C such that f (a+b) = f (a)+ f (b) and
f (ab) = f (a) f (b) for all a,b ∈ B, such that f (Bi) ⊂ Ci for all i ∈ N and such that
f ◦ ιB = ιC. This defines the category GrAlgA of graded A-algebras.

An element a ∈ B is homogeneous (of degree i) if a ∈ Bi for some i ∈ N (and if
a 6= 0). A homogeneous ideal of B is an A-submodule I of B such that ab,ba ∈ I for all
a ∈ I and b ∈ B and such that I is generated by homogeneous elements, i.e. I =

⊕
i∈N Ii

for Ii = I∩Bi.

Example 4.1.3. Every A-algebra B can be seen as a trivially graded A-algebra with
B0 = B and Bi = {0} for i > 0. A nontrivial example is the polynomial algebra B = A[T ]

117
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over A, which is graded by the A-submodules Bi = {aT i | a ∈ A}. More generally, the
polynomial algebra B = A[T1, . . . ,Tn] in n indeterminates T1, . . . ,Tn is graded by the
A-submodules

Bi =
〈
T e1

1 · · ·T en
n
∣∣e1, . . . ,en ∈ N with e1 + · · ·+ en = i

〉

of B.

Lemma 4.1.4. Let B =
⊕

Bi be a graded A-algebra and I =
⊕

Ii a homogeneous ideal
of B where Ii = I∩Bi. Then the quotient B=B/I together with the submodules Bi =Bi/Ii
is a graded A-algebra with respect to the multiplication [a] · [b] = [ab] for a,b ∈ B and
the composition ιB = πI ◦ ιB : A→ B of ιB : A→ B with the quotient map πI : B→ B/I,
which is a graded homomorphism.

Proof. We begin with showing that B =
⊕

Bi. The A-linear map f̄ :
⊕

Bi → B with
f̄
(
(b̄i)
)
= ∑ b̄i is surjective since the map f :

⊕
Bi→ B with f

(
(bi)
)
= ∑bi is surjective.

It is injective for the following reason. Consider (bi)∈
⊕

Bi such that
[

∑bi
]
= f̄
(
(b̄i)
)
=

0̄, i.e. ∑bi ∈ I. Since I =
⊕

Ii and Ii = I∩Bi, this means that bi ∈ Ii and thus b̄i = 0̄ for
all i ∈ N. This shows that f is injective and thus B =

⊕
Bi.

We continue to verify that the multiplication is well-defined on B = B/I. Given
a,a′,b,b′ ∈ B with [a] = [a′] and [b] = [b′], i.e. both c = a−a′ and d = b−b′ are in I,
we have

[a] · [b] = [ab] =
[
(a′+ c)(b′+d)

]
=
[
a′b′+a′d + cb′+ cd︸ ︷︷ ︸

∈I

]
= [a′b′] = [a′] · [b′],

which shows that the product [a] · [b] = [ab] is well-defined. It is additive on the degrees
of homogeneous elements [a]∈ Bi and [b]∈ B j since a∈ Bi and b∈ B j implies ab∈ Bi+ j
and thus [a] · [b] = [ab] ∈ Bi+ j.

The quotient map πI : B→ B is tautologically a graded homomorphism. In conse-
quence, ιB = πI ◦ ιB : A→ B is a ring homomorphism with ιB(A)⊂ B0. This concludes
the proof of the lemma.

Proposition 4.1.5. Let B =
⊕

Bi be a graded A-algebra and I =
⊕

Ii a homogeneous
ideal of B where Ii = I ∩Bi. Then the quotient B/I together with the quotient map
π : B→ B/I satisfies the following universal property: for every graded A-algebra C
and every graded homomorphism f : B→ C such that f (I) = {0}, there is a unique
graded homomorphism f̄ : B/I→C such that f = f̄ ◦π, i.e. the diagram

B C

B/I

f

π
�

f̄

commutes.

Proof. We leave the proof as Exercise 4.1.
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4.2 The tensor algebra
Let A be a ring.

Definition 4.2.1. Let M be an A-module. The tensor algebra of M is the A-module

T(M) =
⊕

i∈N
Ti(M) where T0(M) = A and Ti(M) = M⊗A · · ·⊗A M︸ ︷︷ ︸

i-times

.

Please note the calligraphic difference in the notation T(M) for the tensor algebra
and the notation T (M) for the torsion submodule of M.

Lemma 4.2.2. Let M be an A-module. Then the canonical inclusion ιT(M) : A =

T0(M)→ T(M) and the multiplication map given by

mi, j : Ti(M)×T j(M) −→ Ti+ j(M)(
m1⊗·· ·⊗mi,n1⊗ . . .⊗n j

)
7−→ m1⊗ . . .⊗mi⊗n1⊗ . . .⊗n j

on the homogeneous parts of T(M) turn T(M) =
⊕

Ti(M) into a graded A-algebra.

Proof. By definition, ιT(M) is a ring homomorphism with ιT(M)(A)⊂ T0(M), and T(M)

is an A-module with respect to the grading T(M) =
⊕

Ti(M). We leave it as an exercise
to verify that the maps mi, j define a multiplication m : T(M)×T(M)→ T(M) that turns
T(M) into an A-algebra.

Remark. Typically the tensor algebra T(M) is non-commutative. For example if M =A2

with basis {v1,v2}, then v1 · v2 = v1⊗ v2 is not equal to v2 · v1 = v2⊗ v2. Note that if M
is a free A-module (of rank r), then Ti(M) is a free A-module (of rank ri), and thus T(M)
is a free A-module.

Lemma 4.2.3. Let M and N be A-modules and f : M→ N a homomorphism. Then the
map T( f ) : T(M)→ T(N) that maps a homogeneous element m1⊗ ·· ·⊗mi ∈ Ti(M)
to f (m1)⊗·· ·⊗ f (mi) ∈ Ti(N) is a graded homomorphism. This defines a covariant
functor T : ModA→ GrAlgA.

Proof. Let g = T( f ) and a,b ∈ T(M). We have g(a+ b) = g(a)+ g(b) by the multi-
linearity of the tensor product and g(ab)=

(
g(a)

)
·
(
g(b)

)
by the definition of the product

of the tensor algebra and T( f ). Also the remaining properties g ◦ ιT(M) = ιT(N) and
g
(

Ti(M)
)
⊂Ti(N) follow at once from the definition of T( f ). Thus T( f ) : T(M)→T(N)

is a graded homomorphism.
We continue with verifying that this defines a covariant functor T : ModA→ GrAlgA.

Clearly, T(idM) : T(M)→ T(M) is the identity map. Given homomorphisms f : M→ N
and g : N→ P of A-modules, we have
(

T(g◦ f )
)(

m1⊗·· ·⊗mi
)
= (g◦ f )(m1)⊗·· ·⊗ (g◦ f )(m1)

=
(

T(g)
)(

f (m1)⊗·· ·⊗ f (m1)
)
=
(

T(g)◦T( f )
)(

m1⊗·· ·⊗mi
)
,

which shows that T : ModA→ GrAlgA is indeed a covariant functor.
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Proposition 4.2.4. Let M be an A-module. Then the tensor algebra T(M) of M together
with the canonical inclusion ιM : M = T1(M)→ T(M) satisfies the following universal
property: for every graded A-algebra B =

⊕
Bi and every A-linear map f : M→ B1,

there is a unique graded homomorphism f̂ : T(M)→ B of graded A-algebras such that
f = f̂ ◦ ιM, i.e. the diagram

M B

T(M)

f

ιM
�

f̂

commutes.

Proof. We leave the proof as Exercise 4.2.

4.3 The symmetric algebra
Let A be a (commutative) ring. Let Si be the symmetric group on {1, . . . , i}.
Definition 4.3.1. Let M be an A-module and T(M) the tensor algebra of M. Define
I0 = {0} and for all i > 0 the submodules

Ii =
〈
m1⊗·· ·⊗mi−mσ(1)⊗·· ·⊗mσ(i) ∈ Ti(M)

∣∣m1⊗·· ·⊗mi ∈ Ti(M),σ ∈ Si
〉

of Ti(M). Let I =
⊕

i∈N Ii. The symmetric algebra of M is the A-module Sym(M) =
T (M)/I.

Lemma 4.3.2. Let M be an A-module, T(M) its tensor algebra and I =
⊕

Ii the
submodule of T(M) from Definition 4.3.1. Then I is a graded ideal of T(M) and
Sym(M) =

⊕
Symi(M) for Symi(M) = Ti(M)/Ii. The symmetric algebra Sym(M) is

a commutative graded A-algebra.

Proof. We begin with the verification that I is a graded ideal of T(M). Clearly, Ii ⊂
Ti(M). Given a permutation σ ∈ Si and elements m1⊗·· ·⊗mi ∈ Ti(M) and n1⊗·· ·⊗
n j ∈ T j(M), we have
(
m1⊗·· ·⊗mi−mσ(1)⊗·· ·⊗mσ(i)

)
·
(
n1⊗·· ·⊗n j

)

= m1⊗·· ·⊗mi⊗n1⊗·· ·⊗n j−mσ(1)⊗·· ·⊗mσ(i)⊗n1⊗·· ·⊗n j,

which is an element of Ii+ j. By linear extension to sums of homogeneous elements, this
shows that I T(M) = I and, similarly, T(M)I = I, which completes the proof that I is a
graded ideal of T(M).

By Lemma 4.1.4, the quotient Sym(M) = T(M)/I is a graded A-algebra. That
Sym(M) is commutative can be verified on generators of the forms m̄ = [m1⊗·· ·⊗mi]
and n̄ = [n1⊗·· ·⊗n j] of Sym(M). Since

m1⊗·· ·⊗mi⊗n1⊗·· ·⊗n j−n1⊗·· ·⊗n j⊗m1⊗·· ·⊗mi
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is in Ii+ j, we have m̄n̄ = n̄m̄ in Sym(M), which shows that Sym(M) is commutative and
completes the proof.

Lemma 4.3.3. Let M and N be A-modules and f : M→ N an A-linear map. Then the
association

Sym( f ) : Sym(M) −→ Sym(N)
[m1⊗·· ·⊗mi] 7−→ [ f (m1)⊗·· ·⊗ f (mi)]

defines a graded homomorphism of A-algebras. This yields a covariant functor Sym :
ModA→ GrAlgA.

Proof. Let IM and IN be the graded ideals that define the respective symmetric alge-
bras Sym(M) = T(M)/IM and Sym(N) = T(N)/IN . From the definition of the graded
homomorphism T( f ) : T(M)→ T(N), it is evident that it maps IM to IN . Thus by the
universal property of graded quotients (Proposition 4.2.4), the graded homomorphism
T(M)→ T(N)→ Sym(N) induces a morphism Sym( f ) : Sym(M)→ Sym(N) that
maps [m] ∈ Sym(M) = T(M)/IM to

(
T( f )

)
(m).

Clearly, Sym(idM) = idSym(M). Given two homomorphisms f : M→ N and g : N→
P of A-modules, it is immediately verified on generators that Sym(g◦ f ) = Sym(g)◦
Sym( f ). Thus Sym : ModA→ GrAlgA is a covariant functor.

Proposition 4.3.4. Let M be an A-module, T(M) its tensor algebra and Sym(M) its
symmetric algebra.

(1) The composition ιM : M → T(M)→ Sym(M) of the canonical inclusion M =
T1(M) ↪→ T(M) with the quotient map T(M)→ Sym(M) is an injective homo-
morphism of A-modules with image Sym1(M).

(2) The symmetric algebra Sym(M) together with the the inclusion ιM : M→ Sym(M)
satisfies the following universal property: for every commutative graded A-algebra
B =

⊕
Bi and every A-linear map f : M→ B1, there is a unique graded homo-

morphism f̂ : Sym(M)→ B of graded A-algebras such that f = f̂ ◦ ιM, i.e. the
diagram

M B

Sym(M)

f

ιM
�

f̂

commutes.

Proof. We leave the proof as Exercise 4.3.

Recall from Example 4.1.3 that the polynomial ring B = A[T1, . . . ,Tn] is a graded
A-algebra with respect to the A-submodules

Bi =
{

aT e1
1 · · ·T en

n
∣∣a ∈ A,e1, . . . ,en ∈ N with e1 + · · ·+ en = i

}
.
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Lemma 4.3.5. Let M be a free A-module of finite rank r with basis B = {v1, . . . ,vr}.
Then the association

A[T1, . . . ,Tr] −→ Sym(M)
Ti 7−→ vi

defines an graded isomorphism of graded A-algebras, and Symi(M) is free of rank

(
r−1+ i

i

)
=

(r−1+ i)!
i!(r−1)!

.

Proof. We leave the proof as Exercise 4.4.

4.4 The exterior algebra
Let A be a commutative ring.

Definition 4.4.1. Let M be an A-module and T(M) its tensor algebra. Define I0 = {0}
and for i > 0 the submodules

Ii =
〈
m1⊗ . . .⊗mi ∈ Ti(M)

∣∣mk = ml for some k 6= l
}

of Ti(M). Let I =
⊕

i∈N Ii. The exterior algebra of M is the quotient Λ(M) = T(M)/I.
The i-th exterior power of M is the quotient Λi(M) = Ti(M)/Ii. We write m1∧ . . .∧mi
for the class of m1⊗ . . .⊗mi in Λ(M).

Lemma 4.4.2. Let M be an A-module, T(M) its tensor algebra and I =
⊕

i∈N Ii the
submodule of T(M) from Definition 4.4.1. Then I is a graded ideal of T(M) and
Λ(M) =

⊕
Λi(M) is a graded A-algebra.

Proof. By definition, we have Ii ⊂ Ti(M) and I =
⊕

Ii. Consider elements m1⊗·· ·⊗
mi ∈ Ii, i.e. mk = ml for some k 6= l, and n1⊗·· ·⊗n j ∈ T j(M). Then their product

m1⊗·· ·⊗mi⊗n1⊗·· ·⊗n j

still satisfies mk = ml and is thus contained in Ii+ j. Thus IΛ(M) = I, and similarly,
Λ(M)I = I. This shows that I =

⊕
i∈N Ii is a graded ideal. By Proposition 4.1.5, the

quotient Λ(M) =
⊕

Λi(M) is a graded A-algebra.

Lemma 4.4.3. Let M and N be A-modules. Then the association

Λ( f ) : Λ(M) −→ Λ(N)
m1∧·· ·∧mi 7−→ f (m1)∧·· ·∧ f (mi)

defines a graded homomorphism of A-algebras. This yields a covariant functor Λ :
ModA→ GrAlgA.
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Proof. Let IM and In be the respective defining ideals of Λ(M) = T(M)/IM and Λ(N) =
T(N)/IN . The graded homomorphism T( f ) : T(M)→ T(N) maps IM to IN , and thus
the composition T(M)→ T(N)→ Λ(N) with the quotient map π : T(N)→ Λ(N) maps
all elements of IM to 0. Thus by the universal property of quotients of graded algebras
(Proposition 4.1.5), there is a unique graded homomorphism Λ( f ) : Λ(M)→ Λ(N) that
maps m1∧ . . .∧mi to f (m1)∧ . . .∧ f (mi), which completes the proof.

Proposition 4.4.4. Let M be an A-module and Λ(M) its exterior algebra. Then the
following holds.

(1) For all m,n ∈M, we have m∧n =−n∧m.

(2) The defining ideal I of Λ(M) = T(M)/I is the smallest graded ideal of T(M) that
contains the submodule

I2 =
〈
m⊗m

∣∣m ∈M
〉

A.

(3) If M is generated by r elements, then Λi(M) = 0 for all i > r.

Proof. Claim (1) follows since

0 = (m+n)∧ (m+n) = m∧m︸ ︷︷ ︸
=0

+m∧n+n∧m+n∧n︸︷︷︸
=0

implies m∧n =−n∧m, as desired.
We continue with (2). Given m1⊗ . . .⊗mi with mk = ml for some k < l, we can use

(1) repeatedly to gain the equality

m1⊗ . . .⊗mi = ±(mk⊗ml︸ ︷︷ ︸
∈I2

) ·
(
m1⊗ . . . m̂k . . . m̂l . . .⊗mi

)
,

which shows that every ideal containing I2 contains I. Thus (2).
We continue with (3). If M is generated by v1, . . . ,vr, then every element of Ti(M)

can be written as a linear combination

∑aσvσ(1)⊗ . . .⊗ vσ(i)

for certain aσ ∈ A where σ varies through all maps σ : {1, . . . , i}→ {1, . . . ,r}. If i > r,
then every map σ : {1, . . . , i}→ {1, . . . ,r} fails to be injective, and thus every element
vσ(1)⊗ . . .⊗ vσ(i) in this expression is in Ii. This shows that ∑aσvσ(1)∧ . . .∧ vσ(i) = 0
for i > r. Thus (3).

Definition 4.4.5. Let M and N be A-modules and i > 0. A map f : Mi→ N is multi-
linear if for all k ∈ {1, . . . , i}, for all a ∈ A and for all elements m = (m1, . . . ,mi) and
n = (n1, . . . ,ni) of Mi with ml = nl for l 6= k, we have

f
(
(m1, . . . ,mk−1,a.mk,mk+1, . . . ,mi)

)
= a. f (m),

f
(
(m1, . . . ,mk−1,mk +nk,mk+1, . . . ,mi)

)
= f (m)+ f (n).

A map Mi→ N is alternating if it is multi-linear and if f
(
(m1, . . . ,mi)

)
= 0 for every

(m1, . . . ,mi) ∈Mi for which mk = ml for some k 6= l.
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Proposition 4.4.6. Let M be an A-module, i> 0 and Λi(M) its i-th exterior power. Then
the following holds.

(1) The map α : Mi→ Λi(M) that sends (m1, . . . ,mi) to m1∧ . . .∧mi is alternating.

(2) The i-th exterior power Λi(M) of M together with the alternating map α : Mi→
Λi(M) satisfies the following universal property: for every A-module N and every
alternating map f : Mi→ N, there is a unique A-linear map f̂ : Λi(M)→ N such
that f = f̂ ◦α, i.e. the diagram

Mi N

Λi(M)

f

α �
f̂

commutes.

Proof. The map α is the composition of the multilinear map β : Mi → Ti(M) to the
i-th tensor power of M followed by the quotient map π : Ti(M)→ Λi(M), and therefore
multilinear itself. By the definition of Λi(M), we have α

(
(m1, . . . ,mi)

)
= 0 if mk = ml

for some k 6= l. Thus α is alternating, as claimed in (1).
Consider an alternating map f : Mi→ N. By the universal property of the tensor

product (Proposition 3.3.3), there is a unique A-linear map f̃ : Ti(M)→ N such that
f = f̃ ◦β. For m1⊗ . . .⊗mi ∈ Ti(M) with mk = ml for some k 6= l, we have by our
assumptions

f̃ (m1⊗ . . .⊗mi) = f
(
(m1, . . . ,mi)

)
= 0.

Since the defining submodule Ii of Λi(M) = Ti(M)/Ii is generated by elements m1⊗
. . .⊗mi with mk = ml for some k 6= l, the universal property of quotient modules
(Propositions 3.2.2) implies that there is a unique morphism f̂ : Λi(M)→ N such that
f̃ = f̂ ◦π. Thus f = f̃ ◦α= ĥ◦π ◦α= f̂ ◦β, as desired. The uniqueness of f̂ follows
from the construction.

Example 4.4.7. The following is a key example of an alternating map. Let M be a free
A-module with basis {v1, . . . ,vr}. Then the determinant det : Mr→ A, which is defined
by

det
( r

∑
i=1

ai,1vi, . . . ,
r

∑
i=1

ai,rvi

)
= ∑

σ∈Si

(
sign(σ)

r

∏
i=1

ai,σ(i)

)
,

is alternating. By the universal property of the r-th exterior power of M, this yields an A-
linear map det : Λr(M)→ A with det= det◦α where α : Mr→Λr(M) is the alternating
map that sends (m1, . . . ,mr) to m1∧ . . .∧mr. Note that since det

(
(v1, . . . ,vr)

)
= 1, the

A-linear map det : Λr(M)→ A is surjective.

Let i,r ∈ N. A map σ : {1, . . . , i}→ {1, . . . ,r} is strictly order preserving if σ(k)<
σ(l) for all k, l ∈ {1, . . . , i} with k < l.
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Theorem 4.4.8. Let i,r ∈N with i6 r and M be a free A-module with basis {v1, . . . ,vr}.
Then Λi(M) is a free A-module of rank

(r
i

)
with basis

Bi =
{

vσ(1)∧ . . .∧ vσ(i)
∣∣∣σ : {1, . . . , i}→ {1, . . . ,r} strictly order preserving

}

where we apply the convention that the empty wedge product is 1, i.e. B0 = {1}.

Proof. By Proposition 4.4.4.(1), we have

vkσ(1) ∧ . . .∧ vkσ(i) = sign(σ).
(
vk1 ∧ . . .∧ vki

)

for all k1, . . . ,ki ∈ {1, . . . ,r} and permutations σ ∈ Si, and vk1 ∧ . . .∧vki = 0 if kr = ks for
some r 6= s. This shows that Bi generates M, and thus the natural map Φ :

⊕
v∈Bi

A.v→
ΛiM is surjective.

We continue with showing that Φ is injective and thus an isomorphism. If i = 0,
then Λ0(M) = T0(M) = A by definition, and thus B0 = {1} is a basis. For i = r, the
association a 7→ a.(v1∧ . . .∧ vr) defines an A-linear map A→ Λr(M) that is inverse to
the A-linear map det : Λ(M)r→ A from Example 4.4.7. Thus Λr(M)' A is free of rank
1 with basis Br = {v1∧ . . .∧ vr}.

For 16 i6 r−1, we consider a relation

∑
σ:{1,...,i}→{1,...,r}

strictly order preserving

aσ.
(
vσ(1)∧ . . .∧ vσ(i)

)
= 0∧ . . .∧0.

with aσ ∈ A. We need to prove that aτ = 0 for every strictly order preserving map
τ : {1, . . . , i} → {1, . . . ,r}. Since τ is injective, we can extend it to a bijection τ̂ :
{1, . . . ,r}→ {1, . . . ,r}. This allows us to define the A-linear map f : Λi(M)→ Λr(M)
with

f
(
vσ(1)∧ . . .∧ vσ(i)

)
= vσ(1)∧ . . .∧ vσ(i)∧ vτ̂(i+1)∧ . . .∧ vτ̂(r)

If σ : {1, . . . , i} → {1, . . . ,r} is another order preserving map with imσ = imτ , then
necessarily σ = τ . Thus if σ 6= τ , then imσ contains an element of

{
τ̂(i+1), . . . , τ̂(r)

}
.

Therefore we can deduce that

0 = 0∧ . . .∧0∧ vτ̂(i+1)∧ . . .∧ vτ̂(r)
= ∑

σ:{1,...,i}→{1,...,r}
strictly order preserving

aσ.
(
vσ(1)∧ . . .∧ vσ(i)∧ vτ̂(i+1)∧ . . .∧ vτ̂(r)

)

= aτ .
(
vτ̂(1)∧ . . .∧ vτ̂(i)∧ vτ̂(i+1)∧ . . .∧ vτ̂(r)

)

=
(
sign(τ̂)aτ

)
.
(
v1∧ . . .∧ vi

)
.

Since Λr(M) ' A, this implies that aτ = 0. Thus Φ :
⊕

v∈Bi
A.v→ ΛiM is an isomor-

phism and Bi is a basis for Λi(M). The rank of Λi(M) is equal to

#Bi =
{

i-subset of {1, . . . ,r}
}

=
(r

j

)
,

which completes the proof of the theorem.
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4.5 Exercises
Exercise 4.1. Prove Proposition 4.1.5.

Exercise 4.2. Prove Proposition 4.2.4.

Exercise 4.3. Prove Proposition 4.3.4.

Exercise 4.4. Prove Lemma 4.3.5.

Exercise 4.5. Let M be a free A-module of rank r > 0 with basis {v1, . . . ,vr}. Show that
the map

A[T1, . . . ,Tr] −→ Sym(M)
Ti 7−→ vi

is a graded isomorphism of graded A-algebras. Show that T i(M) is free of rank ri and
that Symi(M) is free of rank

(r+i−1
i

)
.

Exercise 4.6. Let A be a Q-algebra and M a finitely generated A-module. The exponen-
tial map exp : Λ(M)→ Λ(M) is defined by the formula

exp(x) = 1+ ∑
k>1

1
k!

(x∧ . . .∧ x)︸ ︷︷ ︸
k−times

.

Show that exp(x) is equal to a finite sum, and therefore well-defined as an element of
Λ(M). Calculate the expressions exp(m) and exp(m∧n+o∧ p) where m,n,o, p ∈M.
Does the formula exp(x+ y) = exp(x)∧exp(y) hold for any x,y ∈ Λ(M)?

Exercise 4.7. Let M be an A-module. Consider the ideals

I = 〈m⊗m |m ∈M 〉 and J = 〈m⊗n+n⊗m |m,n ∈M 〉
of T (M). Show that I = J if 2 is invertible in A. Give an example for A and M where
I 6= J.

Exercise 4.8. Let l6 r be positive integers and M a free A-module with basis {v1, . . . ,vr}.
For i = 1, . . . ,r and j = 1, . . . , l, let ai, j ∈ A and define the elements

m j =
r

∑
i=1

ai, jvi

of M.

(1) Show that there is a unique element δσ ∈ A for every strictly order preserving
maps σ : {1, . . . , l}→ {1, . . . ,n} such that

m1∧ . . .∧ml = ∑δσ.
(
vσ(1)∧ . . .∧ vσ(l)

)

as elements of Λl(M) where σ ranges through all strictly order preserving maps
σ : {1, . . . , l}→ {1, . . . ,n}. Show that

δσ = det(ai, j) i∈imσ
j=1,...,l

.
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(2) Let f : M→M be an endomorphism and Λr( f ) : Λr(M)→ Λr(M) the induced
linear map. Let ai, j ∈ A such that f (vi) = ∑r

j=1 ai, j.v j for i = 1, . . . ,r. Conclude
that

δ = det(ai, j)i, j=1,...,r

is the unique element of A such that
(
Λr( f )

)(
v1∧ . . .∧ vr

)
= δ.

(
v1∧ . . .∧ vr

)
.

Exercise 4.9. This is a continuation of Exercise 4.8. However, we assume that A = k is
field for this exercise. Consequently, M is a k-vector space.

(1) Show that m1∧ . . .∧ml 6= 0 if and only if {m1, . . . ,ml} is linearly independent.

(2) Assume that {m1, . . . ,ml} and {m′1, . . . ,m′l} are linearly independent subsets of M.
Show that there is a λ ∈ k× such that

m′1∧ . . .∧m′l = λ ·m1∧ . . .∧ml.

if and only if {m1, . . . ,ml} and {m′1, . . . ,m′l} span the same l-dimensional subvec-
tor space N of M.
Hint: If they span the same subvector space N, then one can find a l× l-base
change matrix. What is the effect of this matrix on the coefficients δσ from
Exercise 4?

(3) Define P
(
Λl(M)

)
=
(
Λl(M)−{0}

)
/k× as the set of equivalent classes of nonzero

elements of Λl(M) modulo scalar multiplication by nonzero λ ∈ k×. Conclude
from the previous part of the exercise that there is a well-defined inclusion

{
l-dimensional subvector spaces of M

}
−→ P

(
Λl(M)

)
.

Remark: The set P
(
Λl(M)

)
is called the projective space of Λl(M), the above

inclusion is called the Plücker embedding and its image is called the Grassmann
variety Gr(l,n) of l-subspaces in n-space.





Chapter 5

Groups

5.1 Basic definitions
Definition 5.1.1. A group is a set G together with a map

m : G×G −→ G
(a,b) 7−→ a ·b = ab

such that

(1) (ab)c = a(bc) for all a,b,c ∈ G, (associativity)

(2) there is an e ∈ G such that ae = a for all a ∈ G, (neutral element)

(3) for every a ∈ G, there is a b ∈ G such that ab = e (inverses)

for all a,b,c ∈ G where (ab)c = m(m(a,b),c) and a(bc) = m(a,m(b,c)). We call the
map m the multiplication of G.

Note that the associativity allows us to write products a1 · · ·an without ambiguity in
which order we multiply the elements a1, . . . ,an ∈ G.

Lemma 5.1.2. Let G be a group and e,a,b ∈ G such that ce = c for all c ∈ G and
ab = e.

(1) If c ∈ G satisfies c · c = c, then c = e.

(2) We have ec = c for all c ∈ G. If an element e′ ∈ G satisfies ce′ = c for all c ∈ G,
then e′ = e.

(3) We have ba = e. If an element b′ ∈ G satisfies ab′ = e, then b′ = b.

Proof. Let c ∈ G be an element with c · c = c. By axiom (3), there is an element d ∈ G
such that cd = e. Thus c = ce = ccd = cd = e, which establishes (1).

Using this observation, we use all axioms of a group to conclude that

(ba)(ba) = b(ab)a = bea = (be)a = ba,

129
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which implies that ba = e by applying (1) to c = ba. This establishes the first claim of
(3). Consequently, we have for every c ∈ G that

ec = (cd)c = c(dc) = ce = c

where d ∈ G satisfies cd = e and thus also dc = e. This establishes the first claim of (2).
Given an element e′ ∈ G such that ce′ = c for all c ∈ G, then e′ = ee′ = e, which

establishes the second claim of (2). Given an element b′ ∈ G such that ab′ = e, then

b′ = eb′ = (ba)b′ = b(ab′) = be = b,

which establishes the second claim of (3) and completes the proof of the lemma.

We call the element e the neutral element of G. We write a−1 for the element b
with ab = e and call it the inverse of a. The association a 7→ a−1 defines the inversion
i : G→ G. For an integer i > 0 and a ∈ G, we define

ai = a · · ·a︸ ︷︷ ︸
i-times

, a0 = e, a−i = a−1 · · ·a−1
︸ ︷︷ ︸

i-times

.

Note that (ab)−1 = b−1a−1 since (b−1a−1)(ab) = e.

Definition 5.1.3. Let G and G′ be groups. A group homomorphism from G to G′ is a
map f : G→ G′ such that f (ab) = f (a) f (b) for all a,b ∈ G. This defines the category
Groups of groups.

Lemma 5.1.4. Let f : G→ H be a group homomorphism. Then f (e) = e and f (ai) =
f (a)i for all a ∈ G and i ∈ Z.

Proof. Since ee = e, we have f (e) f (e) = f (e), and thus Lemma 5.1.2,(1) implies that
f (e)= e is the neutral element of H. Thus the first claim of the lemma and f (a0)= f (a)0.
For i > 0, we have f (ai) = f (a)i by a repeated application of the defining property of a
group homomorphism.

For a ∈ G with inverse a−1, we have f (a) f (a−1) = f (aa−1) = f (e) = e, and thus
f (a−1) = f (a)−1 is the unique inverse of f (a) in H. Using that ai = (a−1)−i, we
conclude that f (ai) = f (a)i for i < 0.

Definition 5.1.5. A subgroup of G is a nonempty subset H of G such that ab−1 ∈ H
for all a,b ∈ H. We write H < G to denote a subgroup H of G.

Let S be a subset of G. The subgroup generated by S is the intersection 〈S〉 of all
subgroups of G that contain S. We write 〈a1, . . . ,an〉 for 〈{a1, . . . ,an}〉. A group G is
cyclic if G = 〈a〉 for some a ∈ G.

Let I be a set and {Gi}i∈I be a family of groups. The product of {Gi} is the group

∏
i∈I

Gi =
{
(ai)i∈I

∣∣ai ∈ Gi
}
,

together with the coordinatewise multiplication given by (ai) · (bi) = (aibi). The direct
sum of {Gi} is the subgroup

⊕

i∈I

Gi =
{
(ai)i∈I ∈∏

i∈I
Gi

∣∣∣ai = e for all but finitely many i ∈ I
}
.
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Remark. We include some remarks on these definitions. A subgroup of a group G is
the same thing as a subset H of G such that the multiplication m of G restricts to a map
mH : H×H→ H and such that H is a group with respect to mH . Since H is nonempty,
it contains an element a and thus e = aa−1, as well as a−1 = ea−1.

Since the intersection of subgroups of G is a subgroup, 〈S〉 is indeed a subgroup of
G. An isomorphism in Groups (in the sense of Definition 2.3.1) is a bijective group
homomorphism. We leave the verification of these facts as an exercise, as well as the
claims that the product and the direct sum of groups is a group.

5.2 Cosets
Definition 5.2.1. Let G be a group and H a subgroup of G. A left coset of H is a subset
of the form aH = {ah | h ∈ H} of G for some a ∈ G. A right coset of H is a subset of
the form Ha = {ha | h ∈ H} of G for some a ∈ G. We write

G/H = {aH | a ∈ G} and H\G = {Ha | a ∈ G}

for the families of right and left cosets of G, respectively.

Lemma 5.2.2. Let G be a group and H a subgroup of G. Then we have for all a,b ∈ H,

(1) aH = H if and only if a ∈ H;

(2) b ∈ aH if and only if aH = bH, which is the case if and only if a−1b ∈ H;

(3) aH = bH or aH ∩bH =∅;

(4) aH and bH have the same (possibly infinite) cardinality.

Proof. We begin with (1). If aH = H, then a = ae ∈ aH = H. Conversely, assume that
a ∈ H. Since H is a subgroup of G, we have ah ∈ H for all h ∈ H and thus aH ⊂ H.
Since a−1 ∈ H, we have a−1h ∈ H for all h ∈ H and thus h = a(a−1h) ∈ aH, which
shows that H ⊂ aH. Thus aH = H as claimed, which establishes (1).

We continue with (2). We have b ∈ aH if and only if b = ah for some h ∈ H, which
is the case if and only if bH = ahH = aH since hH = H by (1). Multiplying aH = bH
with a−1 from the left yields a−1bH = H, which is equivalent with a−1b = h ∈ H by
(1). Thus (2).

We continue with (3). If there is an element c ∈ aH ∩bH, then aH = cH = bH by
(2). Thus (3).

We continue with (3). The map

aH −→ bH
ah 7−→ (ba−1)ah

is a bijection whose inverse sends an element bh ∈ bH to (ab−1)bh. Thus aH and bH
have the same cardinality, which establishes (4).
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Definition 5.2.3. Let G be a group and a ∈G. The order of G is the cardinality ord(G)
of G. The order of a is the cardinality ord(a) of the cyclic subgroup 〈a〉 generated by a.
Let H be a subgroup of G. The index of H in G is the cardinality (G : H) of G/H.

Remark. If the order of a ∈G is finite, then it is the smallest positive integer i such that
ai = e. If the order of a is infinite, then ai 6= e for all positive integers i.

Theorem 5.2.4 (Lagrange’s theorem). Let G be a finite group and H a subgroup of G.
Then ord(G) = (G : H) ·ord(H). In particular, both the order of H and the index of H
in G divide the order of G.

Proof. By Lemma 5.2.2.(3), the left cosets of H are disjoint, and thus

G =
∏

aH∈G/H
aH.

By Lemma 5.2.2.(4), all cosets have the same cardinality #H, and thus #G = #(G/H) ·
#H, which proves the theorem.

Corollary 5.2.5. Let G be a finite group and a ∈ G. Then ord(a) divides ord(G).

Proof. This follows at once from Lagrange’s theorem (Theorem 5.2.4) applied to the
cyclic subgroup H = 〈a〉.

5.3 Normal subgroups and quotients
Definition 5.3.1. Let G be a group. A subgroup N of G is normal if aN = Na for all
a ∈ G. We write NCG for normal subgroups N of G. If N is a normal subgroup of G,
then we call G/N the quotient of G by N.

Remark. Note that we can rewrite the condition aN = Na as aNa−1 = N. This means
that a subgroup N of G is normal if and only if aNa−1 = N for all a ∈ G.

Proposition 5.3.2. Let G be a group and N a normal subgroup of G. Then G/N is a
group with respect to the multiplication

m̄ : (G/N)× (G/N) −→ G/N(
[a], [b]

)
7−→ [ab]

where we write [a] for aN. The quotient map πN : G→ G/N with π(a) = [a] is a
surjective group homomorphism.

Proof. We begin with the verification that m̄ is well-defined. Consider a,a′,b,b′ ∈ G
with [a] = [a′] and [b] = [b′]. Then

m̄([a], [b]) = abN = ab′N = aNb′ = a′Nb′ = a′b′N = m̄([a′], [b′])

since b′N = Nb′. Thus m̄ is well-defined as a map.
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We verify that m̄ turns G/N indeed into a group. The multiplication m̄ is associative
since for all a,b,c ∈ G,

(
[a][b]

)
[c] =

[
(ab)c

]
=
[
a(bc)

]
= [a]

(
[b][c]

)
.

The class [e] of e is neutral for G/N since [a][e] = [ae] = [e] for all a ∈ G. Given a ∈ G,
the class [a−1] is an inverse of [a] in G/N, since [a][a−1] = [aa−1] = [e].

The map πN is clearly surjective. It is a group homomorphism since πN(ab) = [ab] =
[a][b] = πN(a)πN(b). This completes the proof.

Definition 5.3.3. Let f : G→ H be a group homomorphism. The kernel of f is the
subset ker f = {a ∈ G | f (a) = e} of G.

Lemma 5.3.4. Let f : G→ H be a group homomorphism. Then its kernel ker f is a
normal subgroup of G.

Proof. Since f (e) = e, the kernel ker f is not empty. Given a,b ∈ ker f , we have
f (ab−1) = f (a) f (b)−1 = e, and thus ab−1 ∈ ker f . Thus ker f is a subgroup of G. Let
a ∈ G and b ∈ ker f . Then by Lemma 5.1.4,

f (aba−1) = f (a) f (b)︸︷︷︸
=e

f (a)−1 = e,

which shows that aba−1 ∈ ker f . Thus a(ker f )a−1 ⊂ ker f for all a ∈ G. Multiplying
with a−1 from the left and with a from the right yields ker f = a−1(a(ker f )a−1)a ⊂
a−1(ker f )a for all a ∈ G. Replacing a by a−1 in this last inequality shows that
a(ker f )a−1 = ker f for all a ∈ G. Thus ker f is a normal subgroup of G.

Remark. Note that a normal subgroup N equals the kernel kerπN of the quotient map
πN : G→ G/N. Thus the subsets of G that are kernels of morphisms into other groups
are precisely the normal subgroups of G.

Lemma 5.3.5. A group homomorphism f : G→H is injective if and only if ker f = {e}.

Proof. Assume that f is injective. Since f (e) = e, the kernel ker f contains e∈G. Since
f is injective, e ∈ G is the only element that is mapped to e ∈ H and thus ker f = {e}.

Conversely assume that ker f = {e} and consider a,b ∈ G with f (a) = f (b). Then
f (a−1b) = f (a)−1 f (b) = e and thus a−1b ∈ ker f . By our assumption, a−1b = e and
thus a = b, as desired.

Lemma 5.3.6. Let f : G→ H be a group homomorphism. Then its image

im f = {a ∈ H | a = f (b) for some b ∈ G}

is a subgroup of H.

Proof. Since f (e) = e, the image im f is not empty. Given a,b ∈ im f , i.e. a = f (c) and
b = f (d) for some c,d ∈ G, we have ab−1 = f (c) f (d)−1 = f (cd−1), which shows that
ab−1 ∈ im f . This shows that im f is a subgroup of H.
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5.4 The isomorphism theorems
Theorem 5.4.1 (First isomorphism theorem). Let f : G→H be a group homomorphism.
Then the association

f̄ : G/ker f −→ im f
[a] 7−→ f (a)

is an isomorphism of groups.

Proof. We begin to verify that f̄ is well-defined as a map. Given a,b ∈ G with [a] = [b],
i.e. a = bh for some h ∈ ker f , then

f (a) = f (bh) = f (b) f (h) = f (b)e = f (b),

which shows that the value f̄
(
[a]
)
= f (a) does not depend on the choice of representative

a for [a].
We continue with showing that f̄ is a group homomorphism. Given a,b ∈ G, we

have
f̄
(
[a][b]

)
= f̄

(
[ab]
)
= f (ab) = f (a) f (b) = f̄

(
[a]
)

f̄
(
[b]
)
,

as desired.
The group homomorphism f̄ is surjective by the definition of its codomain as the

image im f of f . Since f̄
(
[a]
)
= e if and only if a ∈ ker f , the kernel of f̄ consists of a

unique element, which is [e] = ker f . Thus by Lemma 5.3.5, f̄ is injective. This shows
that f̄ is an isomorphism of groups.

Theorem 5.4.2 (Second isomorphism theorem). Let G be a group, H a subgroup and N
a normal subgroup of G. Let HN = {hn ∈ G | h ∈ H,n ∈ N}. Then

(1) HN is a subgroup of G;

(2) H ∩N is a normal subgroup of H;

(3) the map
H/(H ∩N) −→ (HN)/N
a(H ∩N) 7−→ aN

is an isomorphism of groups.

Proof. We begin with (1). Clearly, HN is not empty. Consider hn,h′n′ ∈ HN where
h,h′ ∈ H and n,n′ ∈ N. Then n′′ = (h−1h′)−1n−1(h−1h′) is in N since N is a normal
subgroup and thus

(hn)−1h′n′ = n−1h−1h′n′ = h−1h′n′′n′

is an element of HN. This shows that HN is a subgroup of G. Thus (1).
We continue with (2). By Lemma 5.3.4, the kernel H ∩N = ker f of the restriction

f : H→ G/N of the quotient map G→ G/N to H is a normal subgroup of H. Thus (2).
We continue with (3). By the first isomorphism theorem (Theorem 5.4.1), f induces

an isomorphism

f̄ : H/(H ∩N) = H/ker f −→ im f = HN/N

that maps a(H ∩N) to aN, which verifies (3).
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Theorem 5.4.3 (Third isomorphism theorem). Let G be a group and N a normal sub-
group. Let π : G→ G/N be the quotient map. Then

Φ :
{

subgroups of G containing N
}
−→

{
subgroups of G/N

}

H 7−→ H/N = π(H)

is an inclusion preserving bijection. A subgroup H of G that contains N is a normal
subgroup of G if and only if H/N is a normal subgroup of G/N, and in this case, the
map

G/H −→ (G/N)/(H/N)
aH 7−→ (aH)(H/N)

is a group isomorphism for every subgroup H of G containing N.

Proof. We begin with the first claim of the theorem. By Lemma 5.3.6, the image π(H)
of H is a subgroup of G/N, which shows that Φ is well-defined as a map. Conversely,
the inverse image π−1(H ′) of a subgroup H ′ of G/N contains N and is a subgroup
of G since for a,b ∈ G with π(a),π(b) ∈ H ′, we have π(a−1b) = π(a)−1π(b). Since
H ′ = π

(
π−1(H ′)

)
, we conclude that Φ is surjective. If H is a subgroup of G containing

N, then H = HN = H/N as subsets of G and thus H = π−1(H/N), which shows that Φ
is injective. It is clear that Φ is inclusion preserving. This verifies the first claim of the
theorem.

We continue with the second claim. Let H be a subgroup of G containing N. Then
NH = H and thus [a]H = aH for the class [a] = aN of an element a ∈ G, and similarly
H[a] = Ha. Thus we have aH = Ha if and only if [a]H = H[a], which shows that H is
normal in G if and only if H/N is normal in G/N. Thus the second claim.

We continue with the last claim. Let H be a normal subgroup of G containing
N. Then the group homomorphism f : G→ (G/N)/(H/N) sending a to aH(H/N) is
surjective with kernel HN = H. Thus by the first isomorphism theorem (Theorem 5.4.1),
this yields a group isomorphism

f̄ : G/H = G/ker f −→ im f = (G/N)/(H/N)

that sends aH to f (a) = aH(H/N), which establishes the last claim and concludes the
proof.

5.5 Group actions
Definition 5.5.1. Let G be a group and X a set. A (left) action of G on X is a map

G×X −→ X
(a,x) 7−→ a.x

such that
e.x = x and (ab).x = a.(b.x)

for all a,b ∈ G and x ∈ X .
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One often refers to a left action of G on X by the notation G

�

X . Since we will not
consider right actions in this text, we will simply refer to a left action by an action of G
on X . Often, we suppress the map G×X → X from the notation, and simply say that G
acts on X , and write a.x for the image of (a,x) under the action.

Example 5.5.2. Let G be a group and H a subgroup of G. Then the action

H×G −→ G
(a,x) 7−→ ax

of H on G is called the left translation by H, and the action

H×G −→ G
(a,x) 7−→ axa−1

of H on G is called the conjugation by H. We leave it as an exercise to verify that both
maps define indeed actions of H on G.

Definition 5.5.3. Let G be a group that acts on a set X and x ∈ X . The orbit of x is
the subset O(x) = {a.x | a ∈ G} of X , and x is a fixed point if O(x) = {x}. We write
G\X = {O(x) | x ∈ X} for the collection of all subset of X that are orbits of X . The
stabilizer of x is the subset StabG(x) = {a ∈ G | a.x = x} of G.

Lemma 5.5.4. Let G be a group that acts on a set X. Then y ∈ O(x) if and only if
O(x) = O(y) for all x,y ∈ X, and O(x)∩O(y) =∅ if not. Consequently,

X =
∏

O∈G\X
O.

Proof. We have y ∈ O(x), i.e. y = a.x for some a ∈ G, if and only if

O(x) =
{

b.x
∣∣b ∈ G

}
=
{
(ca).x

∣∣c ∈ G
}

=
{

c.y
∣∣c ∈ G

}
= O(y),

which establishes the first claim. If O(x)∩O(y) contains an element z, then this implies
that O(x) = O(z) = O(y), which verifies the second claim. Thus X decomposes into
a disjoint union of orbits of the action of G on X . This concludes the proof of the
lemma.

Lemma 5.5.5. Let G be a group acting on X, a ∈ G and x ∈ X. Then StabG(x) is a
subgroup of G and StabG(a.x) = a

(
StabG(x)

)
a−1.

Proof. Since e.x = x, the subset StabG(x) is not empty. For b,c ∈ StabG(x), we have

(b−1c).x = b−1.(c.x) = b−1.x = b−1.(b.x) = (b−1b).x = e.x = x,

which shows that StabG(x) is a subgroup of G.
We continue to verify that StabG(a.x) = a

(
StabG(x)

)
a−1. For b ∈ StabG(x), we

have
(aba−1).(a.x) = (aba−1a).x = (ab).x = a.(b.x) = a.x,
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which shows that a−1ba ∈ StabG(a.x). For c ∈ StabG(a.x), we have

(a−1ca).x = a−1.
(
c.(a.x)

)
= a−1.(a.x) = (a−1a).x = e.x = x,

which shows that c ∈ aStabG(x)a−1. Thus StabG(a.x) = a
(

StabG(x)
)
a−1.

Lemma 5.5.6. Let G be a group acting on a set X. Then #O(x) =
(
G : StabG(x)

)
for

every x ∈ X.

Proof. Consider the association

Φ : G/StabG(x) −→ O(x),
aStabG(x) 7−→ a.x

which is well-defined as a map since for b ∈ StabG(x), we have (ab).x = a(b.x) = a.x.
By the definition of O(x), the map Φ is surjective. It is injective since a.x = b.x implies
that x = (a−1b).x and thus a−1b∈ StabG(x), which means that aStabG(x) = bStabG(x).
Thus Φ is a bijection and the cardinality of O(x) equals

(
G : StabG(x)

)
.

5.6 Centralizer and normalizer
Definition 5.6.1. Let G be a group, a ∈ G and H a subgroup of G. The center of G is
the subset Z(G) = {a ∈ G | ab = ba for all b ∈ G} of G. The centralizer of a in G is
the subset CG(a) = {b ∈ G | ab = ba} of G. The normalizer of H in G is the subset
NormG(H) = {a ∈ G | aH = Ha} of G.

Remark. Let G×G→ G be the action of G on itself by conjugation, i.e. a.x = axa−1

for a,x ∈G. Then the center Z(G) is the set of fixed points in G and the centralizer of an
element a equals CG(a) = StabG(a). By Lemma 5.5.5, this implies that the centralizer
of a is a subgroup of G. It is evident from the definition that the center of G is a normal
and commutative subgroup of G.

Let X be the collection of all subgroups of G and G×X → X the conjugation
action, i.e. a.H = aHa−1. Then the normalizer of a subgroup H equals the stabilizer
NormG(H) = StabG(H) of H with respect to this action. By Lemma 5.5.5, this implies
that the normalizer of H is a subgroup of G. By its very definition, NormG(H) is the
largest subgroup of G that contains H as a normal subgroup. By Lemma 5.5.6, we have

#{aHa−1 | a ∈ G} = #O(H) =
(
G : NormG(H)

)
.

Proposition 5.6.2 (Class equation). Let G be a finite group that acts on itself by conjuga-
tion. Let S⊂G a set of representatives of the conjugation classes O(x) = {axa−1 | a∈G}
of elements x ∈ G. Let S′ ⊂ S be the subset of all X ∈ S such that #O(x)> 1. Then

ord(G) = ∑
x∈S

(
G : CG(x)

)
= ord

(
Z(G)

)
+ ∑

x∈S′

(
G : CG(x)

)
.
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Proof. By Lemma 5.5.5, #O(x) =
(
G : CG(x)

)
for every x∈ S. Thus Lemma 5.5.4 yields

the first equality
G =

∏
x∈S

O(x) = ∑
x∈S

(
G : CG(x)

)
.

The second equality follows from the observation that
(
G : CG(x)

)
= #O(x) = 1 if and

only if x ∈ Z(G).

Theorem 5.6.3 (Cauchy’s theorem). Let G be a finite group and p a prime number that
divides the order of G. Then there exists an element a ∈ G of order p.

Proof. We first prove the theorem for the case that G is commutative. We proceed by
induction on n = ord(G). If n = 1, then there is nothing to prove.

Assume that n > 1. Choose an element a ∈ G. If ord(a) = kp for a positive integer
k, then ord(ak) = p, and we are done. If p does not divide ord(a), then ord(G/〈a〉)
is divisible by p and contains an element [b] = b〈a〉 of order p. Since G is abelian,
[b]i = (b〈a〉)i = bi〈a〉= [bi]. Thus bi ∈ 〈a〉 if and only if i is divisible by p. Since e∈ 〈a〉,
this implies that ord(b) = kp for some positive integer k. Thus bk has order p as desired.
This proves that every abelian group contains an element of order p.

We turn to the case of an arbitrary group G, which we also prove by induction on
n = ord(G). If n = 1, then there is nothing to do.

Assume that n > 1. If there is an element a ∈ G that is not in Z(G) and such that p
does not divide

(
G : CG(a)

)
, then p divides ord

(
CG(a)

)
= ord(G)

/(
G : CG(a)

)
. Since

a /∈ Z(G), the subgroup CG(a) has less elements than G, and thus we find an element of
order p in CG(a) by the inductive hypothesis.

We are left with the case that p divides
(
G : CG(a)

)
for all a ∈ G−Z(G). Then the

class equation (Proposition 5.6.2)

ord(G)︸ ︷︷ ︸
divisible by p

= ord
(
Z(G)

)
+ ∑

x∈S′

(
G : CG(x)

)
︸ ︷︷ ︸
divisible by p

shows that ord
(
Z(G)

)
is divisible by p. Since Z(G) is commutative, it contains an

element of order p, as we have proven before.

5.7 Sylow subgroups
Definition 5.7.1. Let G be a finite group and p a prime number. A p-group is a finite
group H whose order is a power of p. A p-subgroup of G is a subgroup that is a
p-group. A p-Sylow subgroup of G is a p-subgroup P of G such that p does not divide
(G : P).

Lemma 5.7.2. Let G be a p-group that acts on a finite set X. Then

#
{

x ∈ X
∣∣O(x) = {x}

}
≡ #X (mod p).
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Proof. By Lemma 5.5.4, we have

#X = #
{

x ∈ X
∣∣O(x) = {x}

}
+ ∑

O∈G\X
#O>1

#O.

By Lemma 5.5.6, the cardinality #O(x) =
(
G : StabG(x)

)
of an orbit O(x) is a divisor of

ord(G) and therefore a power of p since G is a p-group. Thus if #O(x)> 1, then #O(x)
is divisible by p, which proves the claim of the lemma.

Theorem 5.7.3 (Sylow theorems). Let G be a finite group and p a prime number. Then
the following holds.

(1) Every p-subgroup H of G is contained in a p-Sylow subgroup. In particular, G
contains a p-Sylow subgroup.

(2) All p-Sylow subgroups are conjugate to each other.

(3) Let np be the number of p-Sylow subgroups of G. Then np ≡ 1 (mod p) and
np =

(
G : NormG(P)

)
for any p-Sylow subgroup P of G. In particular, np divides

(G : P).

Proof. To begin with, we show by induction on n = ord(G) that G has a p-Sylow
subgroup. If n = 1, the result is trivial.

Assume n > 1. If G has a proper subgroup such that p does not divide (G : H), then
H contains a p-Sylow subgroup P by the inductive hypothesis. Since p does neither
divide (G : H) nor (H : P), it does not divide (G : P) = (G : H)(H : P), which shows
that P is a p-Sylow subgroup of G.

If p divides (G : H) for all proper subgroups H of G, then the class equation
(Proposition 5.6.2)

ord(G)︸ ︷︷ ︸
divisible by p

= ord
(
Z(G)

)
+ ∑

x∈S′

(
G : CG(x)

)
︸ ︷︷ ︸
divisible by p

shows that ord
(
Z(G)

)
is divisible by p. By Cauchy’s theorem (Theorem 5.6.3), Z(G)

contains an element a of order p. Thus the subgroup N = 〈a〉 of G has order p and is
normal in G as a subgroup of Z(G). Let π : G→ G/N be the quotient map.

By the inductive hypothesis, G/N contains a p-Sylow subgroup P′, i.e. ord(P′) = pk

for some k > 0 and m =
(
(G/N) : P′

)
is not divisible by p. Thus P = π−1(P′) is a

p-group with ord(P′) ·ord(N) = pk+1 elements. Since ord(G) = ord(N) ·ord(G/N) =
mpk+1, the index (G : P) = m is not divisible by p. Thus P is a p-Sylow subgroup of G,
which concludes the proof that G has a p-Sylow subgroup.

Let P be a p-Sylow subgroup and X = {aPa−1 | a ∈ G}. Consider the action of G
on X by conjugation. Since X = O(P) and since NormG(P) is the stabilizer StabG(P)
of P with respect to this action, we have #X =

(
G : NormG(P)

)
by Lemma 5.5.4. Since

NormG(P) contains the p-Sylow subgroup P, this implies that p does not divide #X .
Let H be a p-subgroup of G and let us consider the action of H on X by conjugation.

By Lemma 5.7.2, the number of fixed points is congruent to #X modulo p. Since p does
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not divide #X , there is a fixed point, i.e. a conjugate P′ = aPa−1 of P such that H is
contained in NormG(P′). Since P′ has the same cardinality as P, it is also a p-Sylow
subgroup of G.

Since NormG(P′) is the largest subgroup of G that contains P′ as a normal subgroup,
P′ is normal in HP′. By the second isomorphism theorem (Theorem 5.4.2), we have

(HP′)/P′ ' H/(H ∩P′),

which shows that (HP′ : P′) is a divisor of ord(H) and therefore a power of p. We
conclude that ord(HP′) = (HP′ : P′) · ord(P′) is a power of p, and thus HP′ is a p-
subgroup G that contains P′. Since P′ is a p-Sylow subgroup, it is a maximal p-subgroup
and thus HP′ = P′. This shows that H is contained in the p-Sylow subgroup P′, which
establishes (1).

If H is a p-Sylow subgroup itself, then it has the same cardinality as P′ and thus
H = P′ = aPa−1 is a conjugate of P. This establishes (2).

Moreover, this shows that the action of the p-Sylow subgroup H on X by conjugation
has only one fixed point, namely H = aPa−1 itself. Therefore Lemma 5.7.2 implies that
np ≡ 1 (mod p). Since NormG(P) is the stabilizer of P under the action of G on X by
conjugation, Lemma 5.5.6 implies that np = #X =

(
G : NormG(P)

)
. In particular, nP

divides (G : P) =
(
G : NormG(P)

)
·
(

NormG(P) : P
)
. This completes the proof of (3)

and the theorem.

5.8 Exercises
In the following exercises, let G be a group with multiplication m : G×G→G, inversion
i : G→ G and neutral element e.

Exercise 5.1 (Isomorphisms, monomorphisms and epimorphisms). Let f : G→ H be
a group homomorphism. Show that f is an isomorphism in Groups (in the sense of
Definition 2.3.1) if and only if f is bijective. Show that f is a monomorphism if and
only if f is injective. Show that f is an epimorphism if and only if f is surjective.

Exercise 5.2 (Subgroups). Let H be a subset of G. Show that H is a subgroup of G if
and only if e ∈H, m(H×H)⊂H and i(H)⊂H. In other words, H is a subgroup if and
only if it is a group with respect to the restrictions of m and i to H.

Exercise 5.3 (The center). Show that the center of G

Z(G) = {a ∈ G |ab = ba for all b ∈ G}

is a subgroup of G. Show that Z(G) is commutative. Show that every subgroup of Z(G)
is normal in G. Is every commutative subgroup of G normal?

Exercise 5.4 (The subgroup generated by a subset). (1) Let {Hi}i∈I be a family of
subgroups of G. Show that the intersection

⋂
i∈I Hi is a subgroup of G.
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(2) Let S⊂ G be a subset. Show that
⋂

H<G with S⊂H

H = {a1a−1
2 · · ·a2n−1a−1

2n |n> 1 and a1, . . . ,an ∈ S∪{e}}

and conclude that there is a unique smallest subgroup 〈S〉 of G that contains S.

Exercise 5.5 (Orders of elements in commutative groups). Let G be a commutative
group and a,b ∈ G. Show that ord(ab) divides ord(a) ·ord(b). Is this also true if G is
not commutative?

Exercise 5.6 (Cyclic groups and the Klein four-group). (1) Classify all cyclic groups
up to isomorphism. Which of them are commutative?

(2) Show that a cyclic group of order n has a unique subgroup of order d for each
divisor d of n.

(3) Is the Klein four-group V = (Z/2Z)× (Z/2Z) cyclic? Is it commutative?

Exercise 5.7 (Dihedral groups). Let Dn be the group of symmetries of a regular polygon
with n sides. Show that Dn = 〈r,s〉 where r is a rotation around the center of the polygon
by an angle of 2π/n and s is the reflection at a line passing through the center of the
polygon and one of its vertices. What is the number of elements of Dn? Show that
D3 ' S3, and that for n > 4, the dihedral group Dn is not isomorphic to a symmetric
group.

Exercise 5.8 (Symmetric groups). The symmetric group Sn is the group of permutations
of the numbers 1, . . . ,n, together with composition as multiplication, i.e. σ ·τ = σ◦τ . An
element σ of Sn is called a cycle (of length l) if ord(σ) = l and if there is an i∈ {1, . . . ,n}
such that σ( j) = j if j /∈ {i,σ(i), . . . ,σl−1(i)}; we write σ = (i,σ(i), . . . ,σl−1(i)) in this
case.

(1) Show that (i, . . . ,σl−1(i)) = ( j, . . . ,σl−1( j)) if j = σn(i) for some n> 0.

(2) Two cycles σ = (i, . . . ,σl−1(i)) and τ = ( j, . . . ,τ k−1( j)) are called disjoint if the
sets {i, . . . ,σl−1(i)} and { j, . . . ,τ k−1( j)} are disjoint. Show that σ and τ are
disjoint if and only if στ = τσ.

(3) Show that every element of Sn can be written as a product of disjoint cycles.

(4) A transposition is a cycle (i, j) of length 2. Show that every element of Sn can be
written as a product of transpositions.

Exercise 5.9 (The sign). Let σ be an element of Sn and σ = τn ◦ · · · ◦ τ1 and σ = τ ′m ◦
· · · ◦ τ ′1 two representations of σ as a product of transpositions τ1, . . . ,τn and τ ′1, . . . ,τ

′
m.

(1) Show that n−m is even. Conclude that the map sign : Sn→{±1} that sends σ to
(−1)n is well-defined.

(2) Show that sign is a group homomorphism.
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Exercise 5.10 (Theorem of Cayley). Let G = {a1, . . . ,an} be of finite order n. Define
the map f : G→ Sn that sends al to the permutation σl with σl(i) = j such that alai = a j.
Show that f is an injective group homomorphism. Conclude that every finite group is
isomorphic to a subgroup of a symmetric group.

Exercise 5.11 (The alternating group). The alternating group An is defined as the kernel
of sign : Sn → {±1}. A group G is called simple if G 6= {e} and if the only normal
subgroups of G are {e} and G.

(1) Show that a cyclic group G of order n is simple if and only if n is a prime number.

(2) Show that A3 is simple. Show that A4 is not simple. What about A1 and A2?

(3) Show that An is simple for n> 5.1

Exercise 5.12 (Quaternion group). The quaternion group Q consists of the elements
{±1,±i,± j,±k}, and the multiplication is determined by the following rules: 1 is the
neutral element, (−1)2 = 1 and

i2 = j2 = k2 =−1, (−1)i =−i, (−1) j =− j, (−1)k =−k, i j = k =− ji.

(1) Is Q commutative?

(2) Describe all subgroups of Q.

(3) Which subgroups are normal? What are the respective quotient groups?

Exercise 5.13. Classify all groups with 6 elements and all groups with 8 elements up to
isomorphism.

Exercise 5.14 (Transitivity of index). Let H be a subgroup of G and K a subgroup of H.
Show that (G : K) = (G : H)(H : K).

Exercise 5.15 (Quotients by non-normal subgroups). Let H be subgroup of G. Show
that the association ([a], [b]) 7→ [ab] is not well-defined on cosets [a], [b] ∈ G/H if H is
not normal in G.

Exercise 5.16 (Alternative characterization of normal subgroups). A subgroup H of G
is normal if and only if gHg−1 ⊂ H for every g ∈ G.

Exercise 5.17 (Exercises on normal subgroups). Show the following statements.

(1) Every subgroup of index 2 is normal.

(2) Every subgroup of a commutative group is normal. Is there a non-commutative
group G such that every subgroup H of G is normal?

(3) The intersection of two normal subgroups is a normal subgroup. If both normal
subgroups have finite index, then their intersection has also finite index.

1This exercise is more difficult than others, but solutions can be found in the literature.
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Exercise 5.18 (Universal property of the quotient). Let N be a normal subgroup of G.
Show that the quotient map π : G→ G/N satisfies the following universal property: for
every group homomorphism f : G→ H with f (a) = e for a ∈ N there exists a unique
group homomorphism f̄ : G/N→ H such that f = f̄ ◦π, i.e. the diagram

G H

G/N

f

π
�

f̄

commutes.

Exercise 5.19 (Universal property of the product). Let {Gi}i∈I be a family of groups
and G = ∏Gi their product.

(1) Show that the map πi : G→ Gi that sends (gi)i∈I to gi is a surjective group
homomorphism for every i ∈ I. These maps are called the canonical projections.

(2) Show that the product together with the canonical projections satisfies the fol-
lowing universal property: for every family of group homomorphisms { fi : H→
Gi}i∈I , there is a unique group homomorphism f : H→∏Gi such that f j = π j ◦ f
for every j ∈ I, i.e. the diagram

H ∏Gi

G j

f

fi
π j

�

commutes for every j ∈ I.

Exercise 5.20 (Universal property of the direct sum). Let {Gi}i∈I be a family of com-
mutative groups and G =

⊕
Gi their direct sum.

(1) Show that the map ιi : Gi→ G that sends g to (g j) j∈I with gi = g and g j = e j for
j 6= i is an injective group homomorphism for every i ∈ I. These maps are called
the canonical injections.

(2) Show that the direct sum together with the canonical injections satisfies the
following universal property: for every family of group homomorphisms { fi :
Gi → H}i∈I of commutative groups, there is a unique group homomorphism
f :
⊕

Gi→ H such that f j = f ◦ ι j for every j ∈ I, i.e. the diagram

⊕
Gi H

G j

f

�
f j

ι j

commutes for every j ∈ I.
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(3) Is the same true if H is a non-commutative group?

Exercise 5.21 (Some group actions). Show that the following maps are group actions:

(1) Sn×{1, . . . ,n}→ {1, . . . ,n}, with σ.i = σ(i);

(2) GLn(R)×Rn→ Rn, with g.v = g · v (usual matrix multiplication);

(3) R××Rn→ Rn, with a.v = a · v (scalar multiplication);

(4) the permutation of the vertices of a regular n-gon by elements of the dihedral
group Dn.

Exercise 5.22 (Center and centralizer). Consider the action of G on itself by conjugation.

(1) Show that
{

x ∈ G
∣∣O(x) = {x}

}
=
{

a ∈ G
∣∣ab = ba for all b ∈ G

}
.

(2) Show that CG(x) = {a ∈ G | ax = xa}.
(3) Show that

Z(G) =
⋂

x∈G

CG(x).

Exercise 5.23 (Normalizer). Let H be a subgroup of G. Show that its normalizer
NormG(H) is the largest subgroup of G containing H such that H is a normal subgroup
of NormG(H). Show further that the following properties are equivalent:

(1) H is normal in G;

(2) NormG(H) = G;

(3) H is a fixed point for the action of G on the set of all subgroups of G by conjuga-
tion.

Exercise 5.24 (Short exact sequences). A short exact sequence of groups is a sequence

{e} f1−→ N
f2−→ G

f3−→ Q
f4−→ {e}

of groups and group homomorphism such that im fi = ker fi+1 for i = 1,2,3.

(1) Show that im fi = ker fi+1 for i = 1,2,3 holds if and only if f2 is injective, if
im f2 = ker f3 and if f3 is surjective.

(2) Show that N is isomorphic to N′ = im f1, that N′ is a normal subgroup of G and
that G/N′ ' Q in case of a short exact sequence.

Exercise 5.25. Calculate all orbits and stabilizers for the action of D4 on itself by
conjugation.

Exercise 5.26 (Commutator subgroup). The commutator of two elements a,b ∈ G is
[a,b] = aba−1b−1. The commutator subgroup of G is the subgroup [G,G] generated by
the commutators [a,b] of all pairs of elements a and b of G.
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(1) Show that [a,b] = e if and only if ab = ba. Conclude that [G,G] = {e} if and only
if G is commutative.

(2) Show that c[a,b]c−1 = [cac−1,cbc−1] and conclude that [G,G] is a normal sub-
group of G.

(3) Show that the quotient group Gab = G/[G,G] is commutative.

(4) Show that Gab together with the projection π : G→ Gab satisfies the following
universal property: for every group homomorphism f : G→H into a commutative
group H, there exists a unique group homomorphism f ab : Gab→ H such that
f = f ab ◦π:

G H

Gab

f

π �
f ab

Exercise 5.27. Determine all p-Sylow subgroups of S4 for p ∈ {2,3}.

Exercise 5.28. Let ord(G) = 6 and np the number of p-Sylow subgroups of G. Find all
possibilities for n2 and n3, using the Sylow theorems. Find examples of groups with 6
elements that realize these possibilities.

Exercise 5.29. Let ord(G) = pq for prime numbers p and q. Show that G is not simple.

Hint: If p = q, then use the class equation. If p 6= q, then use the Sylow theorems.





Chapter 6

Outlook to algebraic geometry

In this chapter, we introduce some concepts from algebraic geometry and use them to
study curves in the affine plane. We will discuss some central theorems like Hilbert’s
Basissatz, Hilbert’s Nullstellensatz, Nakayama’s lemma and Krull’s principal ideal
theorem. Even though the proofs of these theorems are fairly elementary and accessible
within the framework of this course, we omit them for the purpose of a compact
presentation of this chapter.

6.1 Hilbert’s Basissatz
Definition 6.1.1. A ring A is Noetherian if every ideal of A is finitely generated.

Theorem 6.1.2 (Hilbert’s Basissatz). Let A be a Noetherian ring. Then A[T ] is Noethe-
rian.

We do not prove this theorem in these notes.

Corollary 6.1.3. Let K be a field, n a positive integer and I an ideal in K[T1, . . . ,Tn].
Then K[T1, . . . ,Tn]/I is Noetherian.

Proof. By Hilbert’s Basissatz (Theorem 6.1.2), K[T1, . . . ,Tn] = (· · ·(K[T1])[T2] · · ·)[Tn]
is Noetherian. Let J be an ideal of K[T1, . . . ,Tn]/I and π : K[T1, . . . ,Tn]→K[T1, . . . ,Tn]/I
the quotient map. Since K[T1, . . . ,Tn] is Noetherian, J′ = π−1(J) is finitely generated,
i.e. J′ = 〈 f1, . . . , fr〉 for some f1, . . . , fr ∈ K[T1, . . . ,Tn]. Then J = 〈π( f1), . . . ,π( fr)〉 is
also finitely generated, which concludes the proof.

Another useful fact is the following.

Lemma 6.1.4. Let A be a Noetherian ring and S a multiplicative set in A. Then S−1A is
Noetherian.

Proof. Let ι : A→ S−1A be the canonical map and consider an ideal I of S−1A. Since
A is Noetherian, ι−1(I) is generated by finitely many elements a1, . . . ,ar ∈ A. Then

147
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bi = ι(ai) ∈ I fir i = 1, . . . ,r. Consider an element b
s ∈ I. Then b

1 = sb
s ∈ I and b

1 = ι(a)
for some a ∈ ι−1(I). Thus a = ∑ciai for some c1, . . . ,cr ∈ A and

b
s

=
1
s
ι(a) =

1
s

r

∑
i=1

ciι(ai) =
r

∑
i=1

ci

s
bi,

which shows that I is generated by b1, . . . ,br. This concludes our proof that every ideal
of S−1A is finitely generated.

6.2 Affine varieties
For the rest of this chapter, we fix an algebraically closed field K and n ∈ N. The
reader might assume safely that K = C, but, in fact, everything is valid for an arbitrary
algebraically closed field.

Definition 6.2.1. The affine n-space over K is the set Kn.

We recall the multi-index notation for polynomials in several variables from section
1.9. For e = (e1, . . . ,en) ∈ Nn and a = (a1, . . . ,an) ∈ Kn, we write T e for the monomial
T e1

1 · · ·T en
n in K[T1, . . . ,Tn] and ae for the element ae1

1 · · ·aen
n of K. A polynomial f =

∑ceT e in K[T1, . . . ,Tn] defines a function

f : Kn −→ K,
a 7−→ f (a) = ∑ceae

which we denote by the same symbol f .

Definition 6.2.2. Let S be a subset of K[T1, . . . ,Tn]. The vanishing set of S is the subset

V(S) =
{

a ∈ Kn ∣∣ f (a) = 0 for all f ∈ S
}

of Kn. We write V( f1, . . . , fr) for V({ f1, . . . , fr}).

Lemma 6.2.3. The vanishing sets in Kn satisfy the following properties:

(1) V(S) = V(I) for every subset S of K[T1, . . . ,Tn] and the ideal I generated by S;

(2) V(0) = Kn and V(1) =∅;

(3) V(T1−a1, . . . ,Tn−an) = {(a1, . . . ,an)} for all a ∈ Kn;

(4) V(S) =
⋂

f∈SV( f ) for all subsets S of K[T1, . . . ,Tn];

(5) V( f ·g) = V( f )∪V(g) for all f ,g ∈ K[T1, . . . ,Tn].

Proof. We begin with (1). Since S ⊂ I, we have V(I) ⊂ V(S). Conversely, I consists
of elements of the form ∑ci fi with ci ∈ A and fi ∈ S. For such an element ∑ci fi and
a ∈ V(S), we have (

∑ci fi
)
(a) = ∑ci fi(a)︸︷︷︸

=0

= 0,



6.2. Affine varieties 149

which shows that a ∈ V(I). Thus (1).
Part (2) follows since the zero polynomial 0 maps every a ∈ Kn to 0 and the constant

polynomial 1 maps a to 1. Part (3) follows since

V(T1−a1, . . . ,Tn−an) =
{

b ∈ Kn ∣∣b1−a1 = 0, . . . ,bn−an = 0
}

=
{
(a1, . . . ,an)

}
.

Part (4) follows since

V(S) =
{

a ∈ Kn ∣∣ f (a) = 0 for all f ∈ S
}

=
⋂

f∈S

{
a ∈ Kn ∣∣ f (a) = 0

}
=
⋂

f∈S

V( f ).

Part (5) follows since

V( f ·g) =
{

a ∈ Kn ∣∣( f ·g)(a) = 0
}

=
{

a ∈ Kn ∣∣ f (a) = 0
}
∪
{

a ∈ Kn ∣∣g(a) = 0
}

= V( f )∪V(g).

Remark. Note that by Hilbert’s Basissatz (Theorem 6.1.2), every ideal I of K[T1, . . . ,Tn]
is finitely generated. Thus for every subset S of K[T1, . . . ,Tn], the ideal I = 〈S〉 is
finitely generated, i.e. I = 〈 f1, . . . , fr〉 for some f1, . . . , fr ∈ K[T1, . . . ,Tn], and thus
V(S) = V(I) = V( f1, . . . , fr).

As a consequence, properties (2), (4) and (5) show that the vanishing sets form the
closed subsets of a topology for Kn. This topology is called the Zariski topology.

Definition 6.2.4. An affine K-variety is a subset V of Kn of the form V = V(I) for
some ideal I of K[T1, . . . ,Tn]. A point in Kn is an element (a1, . . . ,an) of Kn.

Theorem 6.2.5 (Hilbert’s Nullstellensatz, weak form). Let I be a proper ideal of
K[T1, . . . ,Tn]. Then V(I) is not empty.

We do not prove this theorem in these notes.

Corollary 6.2.6. The map

Φ : Kn −→
{

maximal ideals of K[T1, . . . ,Tn]
}

(a1, . . . ,an) 7−→ 〈T1−a1, . . . ,Tn−an〉

is a bijection.

Proof. Note that 〈T1− a1, . . . ,Tn− an〉 is a maximal ideal since K[T1, . . . ,Tn]/〈T1−
a1, . . . ,Tn−an〉 is isomorphic to K, which is a field. Thus Φ is well-defined.

We establish the injectivity of Φ by contradiction. If Φ was not injective, then there
was an (a1, . . . ,an) ∈ Kn and bi 6= ai such that Ti−bi ∈ 〈T1−a1, . . . ,Tn−an〉. But then

1 = (ai−bi︸ ︷︷ ︸
6=0

)−1((Ti−ai)− (Ti−bi)
)

was an element of 〈T1− a1, . . . ,Tn− an〉, which is not a case and thus a delivers the
desired contradiction. This shows that Φ is injective.
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To show the surjectivity of Φ, consider a maximal ideal m of K[T1, . . . ,Tn]. By
Hilbert’s Nullstellensatz (Theorem 6.2.5), V(m) is not empty and thus contains a point
a = (a1, . . . ,an) of Kn. Since the polynomials fi = Ti−ai vanish in a for all i = 1, . . . ,n,
the point a is contained in V(m∪{ f1, . . . , fn}). This implies that m′ = 〈m∪{ f1, . . . , fn}〉
is a proper ideal that contains m. Since m is maximal, we conclude that m=m′ and thus
f1, . . . , fn ∈m. Since 〈 f1, . . . , fn〉 is itself a maximal ideal, we see that m= 〈 f1, . . . , fn〉=
Φ(a1, . . . ,an) is in the image of Φ. Thus Φ is surjective, which concludes the proof.

6.3 Regular functions
Definition 6.3.1. Let V be an affine variety in Kn. The vanishing ideal of V is the ideal

I(V ) =
{

f ∈ K[T1, . . . ,Tn]
∣∣ f (a) = 0 for all a ∈V

}

of K[T1, . . . ,Tn]. The ring of regular functions on V if O(V ) = K[T1, . . . ,Tn]/I(V ).

Remark. The set I(V ) is indeed an ideal: for f ,g ∈ I(V ) and h ∈ K[T1, . . . ,Tn], we have

( f +g)(a) = f (a)+g(a) = 0 and (h f )(a) = h(a) f (a) = 0.

Lemma 6.3.2. Let V be an affine variety in Kn and f ,g ∈ K[T1, . . . ,Tn]. Then f |V = g|V
as functions V → K if and only if [ f ] = [g] as elements of O(V ).

Proof. Define h = f −g. Then f (a) = g(a) for all a ∈V if and only if h(a) = 0 for all
a ∈V , i.e. h ∈ I(V ). This means exactly that [ f ] = [g+h] = [g] in O(V ).

Definition 6.3.3. Let A be a ring and I an ideal of A. The radical of I is the subset
√

I = {a ∈ A | ai ∈ I for some i > 0}

of A. An ideal I of A is a radical ideal if
√

I = I.

Lemma 6.3.4. Let A be a ring and I an ideal of A. Then
√

I is the intersection of all
prime ideals of A containing I.

Proof. Let p be a prime ideal that contains I and consider a ∈
√

I, i.e. ai ∈ I for some
i > 0. Then ai ∈ p and thus a ∈ p since p is prime. Thus

√
I is contained in the

intersection of all prime ideals p of A with I ⊂ p.
Conversely consider an element a ∈ A that is not contained in

√
I and define S =

{ai | i ∈ N}. Since S∩
√

I = ∅, the ideal S−1
√

I is a proper ideal of S−1A and thus
contained in a maximal ideal m of S−1A. Thus the prime ideal p= ι−1

S (m) contains
√

I
where ιS : A→ S−1A is the canonical homomorphism. Since p∩S =∅, the prime ideal
p does not contain a. This shows that the intersection of all prime ideals p of A with
I ⊂ p is contained in

√
I, which completes the proof.

Remark. As an immediate consequence of Lemma 6.3.4, we see that the radical ideal
is indeed an ideal as the intersection of ideals. Moreover, we conclude that the radical of
an ideal is a radical ideal, and that all prime ideals are radical ideals.
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Theorem 6.3.5 (Hilbert’s Nullstellensatz, strong form). Let I be an ideal of K[T1, . . . ,Tn].
Then I

(
V(I)

)
=
√

I and V(
√

I) = V(I).

It is not very hard to deduce the strong form of Hilbert’s Nullstellensatz from the
weak form. We will omit this proof however.

Corollary 6.3.6. Let V be an affine variety in Kn. The map

ΦV : V −→
{

maximal ideals of O(V )
}

(a1, . . . ,an) 7−→ 〈[T1−a1], . . . , [Tn−an]〉

is a bijection.

Proof. Let π : K[T1, . . . ,Tn]→ O(V ) be the quotient map and m a maximal ideal of
O(V ). Then π−1(m) is a maximal ideal of K[T1, . . . ,Tn] since it is the kernel of the
surjection K[T1, . . . ,Tn]→ O(V )/m whose image is a field. Since π is surjective, two
ideals m and m′ of O(V ) coincide if π−1(m) = π−1(m′). This defines an embedding π∗

of the set of maximal ideals of O(V ) into the set of maximal ideals of K[T1, . . . ,Tn].
Let n be a maximal ideal of K[T1, . . . ,Tn]. By Corollary 6.2.6, there is a unique

a = (a1, . . . ,an) in Kn such that n = 〈T1− a1, . . . ,Tn− an〉. By the third isomorphism
theorem for rings (Theorem 1.4.3), there is a unique maximal ideal m of O(V ) with
n= π−1(m) if and only if I(V )⊂ n. Note that n=

√
n= I

(
V(n)

)
= I
(
{a}
)

by Hilbert’s
Nullstellensatz (Theorem 6.3.5). Thus if a ∈V , i.e. {a} ⊂V , then I(V )⊂ I

(
{a}
)
= n

implies that ΦK(a) is indeed a maximal ideal of O(V ). This shows that ΦV is well-
defined.

The injectivity of Φ implies that ΦV is injective. The map ΦV is surjective since if
the inverse image n= π−1(m) of a maximal ideal m of O(V ) contains I(V ), and thus
Φ−1(n)⊂V , which shows that Φ−1

V (m) = Φ−1(n)∩V is not empty.

Definition 6.3.7. Let V be an affine variety in Kn with ring of regular functions O(V ).
Let a ∈ V and m = ΦV (a). The stalk of O(V ) in a is OV,a = O(V )m. We denote the
unique maximal ideal mOV,a of OV,a by ma.

6.4 Plane curves
From this section on, we will concentrate our study to plane curves. For simplifying our
notation, we use X = T1 and Y = T2.

Definition 6.4.1. A plane curve is the vanishing set C = V( f ) of a polynomial f ∈
K[X ,Y ] in K2. A plane curve C is irreducible if C = V( f ) for an irreducible polynomial
f ∈ K[X ,Y ].

Remark. Since V( f g) = V( f )∪V(g), every plane curve is a finite union of irreducible
plane curves.

Note that, in particular, V( f 2) = V( f )∪V( f ) = V( f ). This shows that f does not
need to be irreducible for V( f ) to be irreducible.
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Lemma 6.4.2. Let C be a plane curve. If C is irreducible, then O(V ) is an integral
domain.

Proof. Let C =V ( f ) for an irreducible f ∈ K[X ,Y ]. Then 〈 f 〉 is a prime ideal and thus
I(C) =

√
〈 f 〉= 〈 f 〉. This shows that O(V ) = K[X ,Y ]/I(C) is an integral domain.

Example 6.4.3. We illustrate some example of complex plane curves C = V( f ), i.e.
for the case K = C and f ∈ C[X ,Y ]. The illustrations capture the respective real parts
C∩R2 of the complex curves C ⊂C2 where we denote the coordinates of R2 by x and y.

x

y(a)

V(Y −X2 +2X)

x

y(b)

V(4XY −1)

x

y(c)

V(X2−Y 2)

x

y(d)

V(Y 2−X3)

y

x(e)

V(Y 2−X3 +X)

y

x(f)

V(Y 2−X3−X2)

6.5 Singular points
Definition 6.5.1. Let f = ∑ai, jX iY j ∈ K[X ,Y ]. The formal partial derivatives of f
are the polynomials

∂ f
∂X

= ∑
i, j∈N

(i+1)ai+1, jX iY j and
∂ f
∂Y

= ∑
i, j∈N

( j+1)ai, j+1X iY j.

The Jacobian matrix of f is the matrix J f =
(

∂ f
∂X ,

∂ f
∂Y

)
, which defines a function

J f : K2 −→ K2

a 7−→
(

∂ f
∂X (a),

∂ f
∂Y (a)

)

Definition 6.5.2. Let f = ∑ai, jX iY j ∈ K[X ,Y ] be an irreducible polynomial and C =
V( f ) a plane curve. A point a ∈ C is singular if J f (a) = (0,0). Otherwise, a is
nonsingular.
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Remark. In the complex case K =C, a point a of a plane curve C =V( f ) is nonsingular
iff and only if there is an open neighbourhood U of a in C2 (in the usual topology of
C2) such that C∩U is a complex submanifold of U . Naively speaking, this is the case if
and only if there is only one tangent direction to C at a.

To explain, if J f (a) 6= 0, then the tangent line at a = (x,y) is given as

Ta( f ) = V
((

∂ f
∂X (a)

)
(X− x)+

(
∂ f
∂Y (a)

)
(Y − y)

)
.

Note that a rigorous definition of the “number of tangent directions” is somewhat subtle,
since the point (0,0) of the curve C = V(Y 2−X3) is a singular point even though
geometrically, V(Y ) seems to be the only tangent line at (0,0); cf. Examples 6.4.3.(d)
and 6.5.7.

Example 6.5.3. Let f = ∑ci, jX iY j be a polynomial in K[X ,Y ]. The criterion J f (a) =
(0,0) assumes a particularly simple shape for the origin o = (0,0) of K2. First of all
notice that o ∈ V( f ) if and only if f (o) = c0,0 = 0. Thus we can assume that f has a
trivial constant coefficient.

Since ∂ f
∂X = ∑(i + 1)ci+1, jX iY j and ∂ f

∂Y = ∑( j + 1)ci, j+1X iY j, we have J f (o) =
(c1,0,c0,1). Thus o is a singular point of V( f ) if and only if c0,0 = c1,0 = c0,1 = 0.

The origin o is a point of the plane complex curve C = V( f ) in the cases (a), (e) and
(f) of Example 6.4.3. We inspect in each case whether o is a singular point.

The curve in (a) is defined by f = Y −X2 +2X , and thus J f = (−2X +2,1). Since
J f (o) = (2,1) is nonzero, o is a nonsingular point of C.

The curve in (e) is defined by f = Y 2−X3 +X , and thus J f = (−3X2 + 1,2Y 2).
Since J f (o) = (1,0) is nonzero, o is a nonsingular point of C.

The curve in (f) is defined by f = Y 2−X3−X2, and thus J f = (−3X2−2X ,2Y 2).
Since J f (o) = (0,0) is zero, o is a singular point of C.

We illustrate the three curves, including the tangent lines To( f ) in the first two cases.
In the third case, there are two “tangent directions” as indicated in the illustration.

To(Y −X2 +2X)

x

y(a)

o y

x

To(Y 2−X3 +X)

(e)

o

T 2
o

y

x(f)

o

Definition 6.5.4. Let C = V( f ) be a plane curve and a ∈C. Let OV,a be the stalk at a
and ma its maximal ideal. The residue field of C at a is the quotient k(a) = OV,a/ma.
The cotangent space of C at a is the quotient T ∗a (C) =ma/m

2
a.

Lemma 6.5.5. Let C = V( f ) be a plane curve and a ∈C. Let k(a) the residue field and
T ∗a (C) the cotangent space of C at a. Then the canonical map ι : K→ OV,a→ k(a) is an
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isomorphism and ma/m
2
a is a k(a)-vector space with respect to the action [b].[c] = [bc]

for b ∈ A and c ∈ma.

Proof. Let m= Φ(a) = 〈X− x,Y − y〉 be the maximal ideal associated with a = (x,y),
cf. Corollary 6.2.6. Then

k(a) = OC,a/ma =
(
K[X ,Y ]/〈 f 〉

)
m

/
〈[X− x], [Y − y]〉

' K[X ,Y ]/〈X− x,Y − y〉 ' K

as K-algebras, which shows that the canonical morphism K→ k(a) is an isomorphism.
This establishes the first claim.

Since for every c ∈ma, the kernel of the OC,a-linear map mc : OC,a→ma/m
2
a that

sends b ∈ OC,a to [bc] is kermc =m, we obtain a well-defined map k(a)× (ma/m
2
a)→

ma/m
2
a. The axioms of a k(a)-action follows at once from the corresponding properties

of the OC,a-action on m, which establishes the second claim.

Theorem 6.5.6. Let C = V( f ) be a plane curve, a ∈C and T ∗a (C) the cotangent space
of C at a. If a is singular, then dimK

(
T ∗a (C)

)
= 2 and if a is nonsingular, then

dimK
(
T ∗a (C)

)
= 1.

Proof. Let a = (x,y). The map (X ,Y ) 7→ (X − x,Y − y) defines an automorphism
K[X ,Y ]→ K[X ,Y ] that induces a variable transformation K2→ K2 that sends a point
a′ = (x′,y′) to (x′− x,y′− y). In particular, it sends a to the origin o = (0,0). Thus we
can assume without loss of generality that a = o. Since (0,0) ∈C = V( f ), the constant
term c0,0 of f = ∑ci, jX iY j is zero.

Let m= 〈X ,Y 〉 be the maximal ideal of K[X ,Y ] that corresponds to o. Consider the
map

θ : m/m2 −→ K2,
[g] 7−→ Jg(o)

which is well-defined since every g ∈ m2 = 〈X2,XY,Y 2〉 is without linear terms and
thus Jg(o) =

(
∂g
∂X ,

∂g
∂Y

)
(0,0) = (0,0). Conversely, Jg(o) = (0,0) implies that g ∈m has

neither a constant term nor linear terms and is thus in m2. This shows that θ is injective.
Given (c,d) ∈ K2, the polynomial g = cX +dY has Jacobian matrix Jg = (c,d) and

thus θ
(
[g]
)
= Jg(o) = (c,d). Thus θ is surjective. This shows that θ : m/m2→ K2 is an

isomorphism of K-vector spaces where we use the identification of K with k(o) from
Lemma 6.5.5.

Let π : K[X ,Y ]→ K[X ,Y ]/〈 f 〉=O(C) be the quotient map and ι : O(C)→OC,o the
canonical map to the localization. Let m̄ = π(m), which is a maximal ideal of O(C),
and mo = 〈ι(m̄)〉, which is the unique maximal ideal of OC,o. The composition of the
restrictions of π to m and ι to m̄ yields a K-linear map

χ : m
π−→ m̄

ι−→ mo,

which induces the map

χ̄ : m/
(
〈 f 〉+m2) −→ mo/m

2
o.

[g] 7−→ [g]
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Note that χ̄ is well-defined since the image ι
(
π(g)

)
of an element g ∈ 〈 f 〉+m2 is in

ι
(
π(〈 f 〉+m2)

)
= ι(m̄2)⊂m2

o. The map χ̄ is injective since χ̄([g]) = 0 implies that g ∈
χ−1(m2

o) = π−1(m̄2) = 〈 f 〉+m2. The map χ̄ is surjective since every [g] ∈mo/m
2
o can

be represented by a linear polynomial g′ = cX +dY and thus [g] = [g′] = χ
(
[cX +dY ]

)
.

This shows that χ : m/(〈 f 〉+m2)→ T ∗o (C) is an isomorphism of K-vector spaces.

The image of the K-linear subspace (〈 f 〉+m2)/m2 of m/m2 under θ is the K-linear
subspace 〈J f (o)〉 of K2, and its dimension is equal to the rank of J f (o). Thus

dimK
(
T ∗o (C)

)
+ rk

(
J f (o)

)
= dimK

(
m
/(
〈 f 〉+m2))+dimK

((
〈 f 〉+m2)/m2

)

= dimK
(
m/m2) = dimK K2 = 2.

If o is singular, then the rank of J f (o) is 0 and thus dimK
(
T ∗o (C)

)
= 2. If o is nonsingular,

then the rank of J f (o) is 1 and thus dimK
(
T ∗o (C)

)
= 1. This concludes the proof of the

theorem.

Remark. Let C = V( f ) be a plane curve. The relation between the cotangent space
T ∗a (C) and the tangent line Ta( f ) at a nonsingular point a ∈C is as follows. We leave
the verification of the details in the following explanations as an exercise.

For an arbitrary point a = (x,y) ∈C, the tangent space at a is defined as the dual
K-vector space Ta(C) = HomK

(
T ∗a (C),K

)
of the cotangent space. We have a canonical

inclusion

ψ : Ta(C) −→ K2

α : T ∗a (C)→ K 7−→
(
α([X ]),α([Y ])

)

of K-vector spaces. Since the dimension of a finitely dimensional K-vector space is
equal to the dimension of the dual space, Theorem 6.5.6 shows that ψ is surjective if a is
singular. If a is nonsingular, then dimK

(
Ta(C)

)
= 1, and the tangent line Ta( f ) of C at

a equals the translation of the image of ψ by the vector a = (x,y), i.e.

Ta( f ) =
{

a+ψ(α)
∣∣α ∈ Ta(C)

}
.

Example 6.5.7. To conclude, we inspect the tangent space of the curve C = V( f )
with f = Y 2− X3 at the origin o = (0,0); cf. Example 6.4.3.(d). The Jacobian is
J f = (2Y,3X2), and thus J f (o) = (0,0), which shows that o is a singular point of
C. Thus by Theorem 6.5.6, the cotangent space T ∗o (C) and its dual To(C) have both
dimension 2 and the image of ψ is all of K2. This shows that the tangent space To(C), as
defined here, is well-suited to detect singularities, in contrast to the geometric intuition
that suggests that the only tangent direction is captured by the line V(Y ), as illustrated
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below.
ψ
(
To(C)

)

x

y

V(Y )o

V(Y 2−X3)

6.6 The stalks of nonsingular points
In this section, we will show that the nonsingular points of a plane curve are characterized
by the property that their stalks are discrete valuation rings, which are particularly well-
behaved rings whose definition is as follows.

Definition 6.6.1. A discrete valuation ring (often just DVR) is a principal ideal domain
with a unique prime element p, up to associatives. The prime element p is called a
uniformizer.

Lemma 6.6.2. Let A be a discrete valuation ring and p ∈ A a uniformizer. Then the
following holds.

(1) For every nonzero a ∈ A, there are a unique u ∈ A× and i ∈ N such that a = upi.

(2) The ring A is local with maximal ideal m= 〈p〉.
(3) Every nonzero ideal I of A is of the form mi = 〈pi〉 for some i ∈ N.

(4) The intersection of all nonzero ideals is
⋂

i∈Nm
i = {0}.

Proof. This is Exercise 1.45.

For the proof of Theorem 6.6.7, we will apply Nakayama’s lemma and Krull’s
principal ideal theorem, which we state here without a proof.

Theorem 6.6.3 (Nakayama’s lemma). Let A be a ring, I an ideal of A and M a finitely
generated A-module. If IM = M, then there is an a ∈ A such that aM = 0 and [a] = [1]
in A/I.

Corollary 6.6.4. Let A be a local ring with maximal ideal m and M an A-module. If
mM = M, then M = 0.

Proof. By Nakayama’s lemma (Theorem 6.6.3), mM = M implies that there is an a ∈ A
such that aM = 0 and [a] = [1] in A/m. Thus a /∈m, which implies by Lemma 1.8.8 that
a is a unit. Thus M = a−1(aM) = 0, as claimed.
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Definition 6.6.5. Let A be a ring and I an ideal of A. The height of I is the supremum
over the lengths l of properly increasing chains

p0 ( p1 ( . . . ( pl

of prime ideals p0, . . . ,pl contained in I.

Theorem 6.6.6 (Krull’s principal ideal theorem). Let A be a Noetherian ring and a ∈ A.
Let p be a minimal prime ideal of A that contains a, i.e. if a ∈ q⊂ p for a prime ideal q,
then q= p. Then the height of p is at most 1.

Theorem 6.6.7. Let C be a plane curve, a ∈C and OC,a its stalk. Then a is nonsingular
if and only if OC,a is a discrete valuation ring.

Proof. Let us assume that OC,a is a discrete valuation ring. Let ma = 〈p〉 be the maximal
ideal of OC,a where p is a uniformizer. Consider the map

ξ : K −→ ma/m
2
a,

[b] 7−→ [bp]

which is well-defined since if [b′] = [b] in K, i.e. b′ = b+ cp for some c ∈ A, then
[b′p] =

[
bp+ cp2] = [bp] in ma/m

2
a. That ξ is K-linear follows at once from the fact

that it is derived from the A-linear map A→ma that sends b to bp.
The K-linear map ξ is injective since ξ

(
[b]
)
= 0 implies that p divides b and thus

[b] = [0] in K. It is surjective since by Lemma 6.6.2, every c ∈ ma is of the form bp
for some b ∈ A and thus [c] = ξ(b′) where b′ is the inverse image of [b] ∈ k(a) under
the isomorphism K→ k(a) from Lemma 6.5.5. This shows that ξ is an isomorphism
of K-vector spaces. Thus dimK

(
ma/m

2
a
)
= 1, which shows that a is nonsingular by

Theorem 6.5.6.
Conversely, assume that a is nonsingular. By Theorem 6.5.6, ma/m

2
a is a one-

dimensional K-vector space and thus generated by a single element [p] where p ∈ma,
i.e. ma = 〈p〉+m2

a. Then

ma ·
(
ma/〈p〉

)
=
(
m2

a + 〈p〉
)/
〈p〉 = ma/〈p〉.

Thus Corollary 6.6.4 implies that ma/〈p〉= 0, which shows that ma = 〈p〉 is generated
by p.

Our next step is to show that OC,a is an integral domain. This follows at once
from Lemma 6.4.2 if C is irreducible. If not, let C = V( f1 · · · fr) where f1, . . . , fr are
irreducible polynomials in K[X ,Y ]. Let a = (x,y) and m= 〈X− x,Y − y〉 the maximal
ideal of K[X ,Y ] defined by a. Since a ∈C, we have 〈 f 〉 ⊂m and thus pi = 〈 fi〉 ⊂m for
some i. Since fi is irreducible, pi is a prime ideal of K[X ,Y ]. To summarize, we have
inclusions 〈 f 〉 ⊂ pi ⊂m.

By Krull’s principal ideal theorem (Theorem 6.6.6), the height of the principal ideal
pi = 〈 fi〉 is at most 1. Since the chain of proper inclusions 〈0〉( 〈X− x〉(m of prime
ideals shows that the height of m is at least 2, we conclude that pi is properly contained in
m. Let π : K[X ,Y ]→ O(C) be the quotient map. By the third isomorphism theorem for
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rings (Theorem 1.4.3), the ideal p̄i = π(pi) of O(C) is properly contained in m̄= π(m)
and

O(C)/p̄i =
(
K[X ,Y ]/〈 f 〉

)/(
pi/〈 f 〉

) ∼−→ K[X ,Y ]/pi

is an integral domain, which shows that p̄i is a prime ideal of O(C). Let ι : O(C)→OC,a
be the canonical map into the localization. By Exercise 1.36, the ideal pi,a = 〈ι(p̄i)〉
is prime and properly contained in the maximal ideal ma = 〈ι(m̄)〉 of OC,a. Since p
generates ma, it is not contained in pi,a. Thus bp ∈ pi,a implies that b ∈ pi,a, which
means that 〈p〉 · pi,a = pi,a. Since ma = 〈p〉 is maximal, Corollary 6.6.4 implies that
pi = 0. This shows that 〈0〉 is a prime ideal of OC,a and that OC,a is an integral domain,
as claimed.

By Corollary 6.1.3, O(C) is Noetherian, and by Lemma 6.1.4, OC,a is Noetherian.
Since ma is the minimal prime ideal that contains p, Krull’s principal ideal theorem
(Theorem 6.6.6) implies that ma has height at most 1. This shows that the only prime
ideals of OC,a are 〈0〉 and ma.

Our next step is to show that OC,a is a principal ideal domain. Let I be a nontrivial
and proper ideal of OC,a. By Lemma 6.3.4, its radical

√
I is the intersection of all prime

ideals containing I, i.e.
√

I = ma. Thus pi ∈ I for some i > 1 and mi = 〈pi〉 ⊂ I. If
I = 〈pi〉, then I is principal.

If mi is properly contained in I, then there is an j > 1 such that I ⊂m j and I 6⊂m j+1.
Thus there is a g = up j ∈ I−m j+1 for some u∈O×C,a. This implies that p j = u−1g∈ I ⊂
m j, which shows that I = 〈p j〉 is principal. This shows that OC,a is a principal domain,
as claimed.

We are left with showing that OC,a has only one prime element up to associatives.
Given two prime elements g and h of OC,a, they both generate a nonzero prime ideal.
Since ma is the only nonzero prime ideal of OC,a, we have 〈g〉=ma = 〈h〉, which shows
that g∼ h. This completes the proof of the theorem.



Chapter 7

What is a universal property?

In the previous chapters, we have encountered numerous examples of universal prop-
erties. Roughly speaking, a universal property applies in situations where we have a
morphism from (or to) an object A to (or from) a second object A′, which is related to A
by some type of construction. The universal property expresses that the morphisms with
certain properties from (or to) A correspond bijectively to the morphisms from (or to) A′.

In this chapter, we will make the concept of a universal property precise in a
categorical framework and explain in which sense universal properties are intimately
linked to adjoint functors.

7.1 Initial and terminal morphisms to a functor

Throughout the whole chapter, let C and D be categories.

Definition 7.1.1. Let F : C→D be a covariant functor and A an object in D. An initial
morphism from A to F is an object Â in C together with a morphism ηA : A→ F(Â) that
satisfies the following universal property: for every object B in C and every morphism
α : A→ F(B), there is a unique morphism α̂ : Â→ B such that α = F(α̂)◦ηA, i.e. the
diagram

A F(B)

F(Â)

α

ηA
�

F(α̂)

commutes.
A terminal morphism from F to A is an object Â in C together with a morphism

εA : F(Â)→ A that satisfies the following universal property: for every object B in C

and every morphism α : F(B)→ A, there is a unique morphism α̂ : B→ Â such that

159



160 What is a universal property?

α= εA ◦F(α̂), i.e. the diagram

F(Â)

F(B) A
�

εA

α

F(α̂)

commutes.

Example 7.1.2. For some universal properties from these lecture notes, it is easy to see
what the corresponding functor F : C→D is. In other cases, this is less obvious. We
consider some examples in the following, and encourage the reader to think about some
other universal properties.

(1) Let F : Rings→ Sets be the forgetful functor, cf. Example 2.5.2, and let A be
a set. Then an initial morphism from A to F is a ring Â together with a map
ηA : A→ F(Â) that satisfies the following universal property: for every ring B and
every map α : A→ F(B), there is a unique ring homomorphism α̂ : Â→ B such
that α= F(α̂)◦ηA, i.e. the diagram

A F(B)

F(Â)

ηA

α

�
F(α̂)

commutes. This universal property is satisfied by the polynomial algebra Â =
Z[Ti | i ∈ A] together with the map ηA : A→ Z[Ti | i ∈ A] with ηA(i) = Ti.

(2) Let D be the category whose objects are pairs (A,S) of a ring A together with a
multiplicative subset S of A and whose morphisms α : (A,S)→ (A′,S′) are ring
homomorphisms α : A→ A′ with α(S) ⊂ S′. Let F : Rings→D be the functor
that sends a ring A to (A,A×) and a ring homomorphism β : A→ B to itself. Note
that β(A×)⊂ B×, which shows that F is well-defined.

Let (A,S) be an object in D. An initial morphism from (A,S) to F is a ring Â
together with a morphism η(A,S) : (A,S)→ (A,A×) that satisfies the following
universal property: for every ring B and every morphism α : (A,S)→ (B,B×)
there is a unique ring homomorphism α̂ : Â→ B such that the diagram

(A,S) (B,B×)

(Â, Â×)

η(A,S)

α

�
α̂

commutes. This universal property is satisfied by the localization Â = S−1A
together with the canonical morphism ηA = ιS : A→ S−1A, which maps S to
(S−1A)×.
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(3) The product C×D of two categories C and D is defined as follows: its objects
are pairs (A,B) of an object A in C and an object B in D and its morphisms
(α,β) : (A,B)→ (A′,B′) are pairs of a morphism α : A→ A′ in C and a morphism
β : B→ B′ in D. The composition of two morphisms (α,β) : (A,B)→ (A′,B′) and
(α′,β′) : (A′,B′)→ (A′′,B′′) is defined as (α′,β′)◦ (α,β) = (α′ ◦α,β′ ◦β). The
diagonal functor ∆ : C→ C×C sends an object A of C to (A,A) and a morphism
α : A→ A′ in C to (α,α) : (A,A)→ (A′,A′).

Let us consider the diagonal functor ∆ : Rings→ Rings×Rings and an object
(A,B) of Rings×Rings. A terminal morphism from ∆ to (A,B) is a ring C =
(A,B)ˆ together with a morphism ε(A,B) : (C,C)→ (A,B) in Rings×Rings that
satisfies the following universal property: for every ring and every morphism
α : (D,D)→ (A,B) in Rings×Rings, there is a unique ring homomorphism
α̂ : D→C such that the diagram

(C,C)

(D,D) (A,B)
�

ε(A,B)

α

(α̂,α̂)

commutes. This universal property is satisfied by the product C = A×B of the
rings A and B together with the morphism ε(A,B) = (πA,πB) : (A×B,A×B)→
(A,B).

7.2 Natural transformations
Definition 7.2.1. Let F : C→ D and G : C→ D be covariant functors. A natural
transformation (or morphism of functors) η : F→ G from F to G is a collection η of
morphisms ηA : F(A)→ G(A) in D where A varies through all objects of C such that the
diagram

F(A) F(B)

G(A) G(B)

F(α)

ηA ηB

G(α)

commutes for every morphism α : A→ B in C.

7.3 The unit and the counit of an adjunction
We recall the definition of adjoint functors from section 2.6. Let F : C → D and
G : D→ F be covariant functors. Then G is left adjoint to F, written G a F, if for every
pair of objects A in D and B in C, there is a bijection

ΦA,B : HomC

(
G(A),B

)
−→ HomD

(
A,F(B)

)
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such that the diagram

HomC

(
G(A′),B

)
HomD

(
A′,F(B)

)

HomC

(
G(A),B′

)
HomD

(
A,F(B′)

)
β◦−◦G(α)

ΦA′,B

F(β)◦−◦α
ΦA,B′

commutes for every pair of a morphism α : A→ A′ in D and a morphism β : B→ B′ in
C, i.e.

ΦA,B′
(
β ◦γ ◦G(α)

)
= F(β)◦ΦA′,B(γ)◦α

for all morphisms γ : G(A′)→ B in C.

Remark. Note that the definition of adjoint functors in section 2.6 was phrased in terms
of the inverse bijection ΨA,B of ΦA,B, with the roles of F and G interchanged. For the
upcoming explanations, the present convention seems more practical though.

Definition 7.3.1. Let G : D→ C be a left adjoint functor to F : C→D with adjunction

HomC

(
G(A),B

)
HomD

(
A,F(B)

)ΦA,B

ΨA,B

for A ∈ Ob(D) and B ∈ Ob(C). The unit of the adjunction is the collection η of
morphisms

ηA = ΦA,G(A)(idG(A)) : A −→ F
(
G(A)

)

where A varies through all objects of C and where idG(A) ∈ HomC

(
G(A),G(A)

)
is the

identity of G(A).
The counit of the adjunction is the collection ε of morphisms

εB = ΨF(B),B(idF(B)) : G
(
F(B)

)
−→ B

where B varies through all objects of D and where idF(B) ∈HomD

(
F(B),F(B)

)
is the

identity of F(B).

In the following, we need to consider compositions of functors, which are defined as
follows.

Definition 7.3.2. Let F :C→D and G :D→D′ be covariant functors. The composition
of F with G is the functor G◦F :C→D′ that sends an object A in C to the object G

(
F(A)

)

in D′ and a morphism α : A→ B in C to the morphism G
(
F(α)

)
: G
(
F(A)

)
→ G

(
F(B)

)

in D′.

Lemma 7.3.3. Let G a F be adjoint functors. Then the unit is a natural transformation
η : idD→ F ◦G and the counit is a natural transformation ε : G◦F→ idC.
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Proof. We want to show that the diagrams

A A′

F ◦G(A) F ◦G(A′)

α

ηA ηA′

F◦G(α)
and

G◦F(B) G◦F(B′)

B B′

G◦F(β)

εB εB′

β

commute for all morphisms α : A→ A′ in D and β : B→ B′ in C. Let

HomC

(
G(A),B

)
HomD

(
A,F(B)

)ΦA,B

ΨA,B

be the adjunction between F and G. Using the definition of the adjunction and of the
unit yields

(
F ◦G(α)

)
◦ηA = F

(
G(α)

)
◦ΦA,G(A)(idG(A))◦ idA

= ΦA,G(A′)
(
G(α)◦ idG(A) ◦ idG(A)

)

= ΦA,G(A′)
(
idG(A′) ◦ idG(A′) ◦G(α)

)

= idF◦G(A′) ◦ΦA′,G(A′)(idG(A′))◦α
= ηA′ ◦α,

which shows that the first diagram commutes. The proof of the commutativity of the
second diagram is similar.

Proposition 7.3.4. Let G a F be an adjunction with unit η : idD→ F ◦G and counit
ε : G◦F→ idC. Then the diagrams

G(A) G◦F ◦G(A)

G(A)

G(ηA)

idG(A)
εG(A)

� and

F(B) F ◦G◦F(B)

F(B)

ηF(B)

idF(B)
F(εB)

�

commute for every object A in D and every object B in C.

Proof. Let

HomC

(
G(A),B

)
HomD

(
A,F(B)

)ΦA,B

ΨA,B

be the adjunction between F and G. By the definitions of ε and η, we have ΦF◦G(A),G(A)(εG(A))=
idF◦G(A) and ηA = ΦA,G(A)(idG(A)), and thus

ΦA,G(A)
(
G(ηA)◦ εG(A) ◦ idG(A)

)
= ηA ◦ΦF◦G(A),G(A)(εG(A))◦ idF◦G(A)
= ΦA,G(A)(idG(A)).
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Since ΦA,G(A) is injective, G(ηA) ◦ εG(A) = idG(A), which shows that the first diagram
commutes.

By the definitions of η and ε, we have ΨF(B),G◦F(B)(ηF(B)) = idG◦F(B) and εB =
ΨB,F(B)(idF(B)), and thus

ΨF(B),B
(
idF(B) ◦ηF(B) ◦F(εB)

)
= idG◦F(B) ◦ΨF(B),G◦F(B)(ηF(B))◦ εB

= ΨF(B),B
(
idF(B)

)
.

Since ΨF(B),B is injective, ηF(B) ◦F(εB) = idF(B), which shows that the second diagram
commutes.

7.4 The relation between universal properties and
adjoint functors

Theorem 7.4.1. Let F : C→D be a functor. Then the following claims are equivalent.

(1) Every object A in D has an initial morphism to F.

(2) The functor F has a left adjoint G : D→ C.

Proof. Assume (1). We construct the functor G : D→ C as follows. For every object A
in D, we define G(A) = Â where Â ∈ Ob(C) together with ηA : A→ F(Â) is the initial
morphism from A to F. By the universal property of the initial morphism ηA applied to
ηA′ ◦α : A→ F(Â′), there is a unique morphism α̂ : Â→ Â′ such that ηA′ ◦α= F(α̂)◦ηA,
i.e. the diagram

A A′

F(Â) F(Â′)

α

ηA ηA′◦α ηA′

F(α̂)

commutes. We define G(α) = α̂. We leave it as an exercise to verify that this defines
indeed a functor G : D→ C. The commutaivity of the above diagrams shows that the
morphisms ηA : A→ F ◦G(A) define a natural transformation η : idD→ F ◦G.

For A ∈ Ob(D) and B ∈ Ob(C), we define the map

ΦA,B : HomC

(
G(A),B

)
−→ HomD

(
A,F(B)

)
.

β 7−→ F(β)◦ηA

Given a morphism α : A→ F(B) in the image of ΦA,B, there is a unique morphism
α̂ : Â→ B such that α = F(α̂) ◦ ηA = ΦA,B(α̂) by the universal property of the initial
morphism ηA : A→ F(Â) from A to F. This shows that ΦA,B is a bijection.

In order to show that G is a left adjoint to F, we have to show that the diagram

HomC

(
G(A′),B

)
HomD

(
A′,F(B)

)

HomC

(
G(A),B′

)
HomD

(
A,F(B′)

)
β◦−◦G(α)

ΦA′,B

F(β)◦−◦α
ΦA,B′
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commutes for every pair of morphisms α : A→ A′ in D and β : B→ B′ in C. This
follows from the identity

ΦA,B′
(
β ◦γ ◦G(α)

)
= F

(
β ◦γ ◦G(α)

)
◦ηA

= F(β)◦F(γ)◦
(
F ◦G(α)

)
◦ηA

= F(β)◦F(γ)◦ηA′ ◦α
= F(β)◦ΦA′,B(γ)◦α

for every morphism γ : G(A′)→ B in C where we use that η : idD→ F ◦G is a natural
transformation to conclude that

(
F ◦G(α)

)
◦ηA = ηA′ ◦α. This completes the proof the

G is left adjoint to F and thus (2).
Assume (2). Let G : D→ C be a left adjoint to F. Let η : idD→ F ◦G be the unit

and ε : G◦F→ idC be the counit of the adjunction. Consider an object A in D. We will
verify the universal property of an initial morphism from A to F for Â = G(A) and the
morphism ηA : A→ F(Â).

Let B be an object of C and α : A→F(B) a morphism in D. We define α̂= εB ◦G(α),
and consider the diagram

A F ◦G(A)

F(B) F ◦G◦F(B) F(B)

ηA

α F◦G(α) F(α̂)

ηF(B) F(εB)

whose square on the left hand side commutes by Lemma 7.3.3 and whose triangle on
the right hand side commutes by the definition of α̂. By Proposition 7.3.4, we have
F(εB)◦ηF(B) = idF(B) and thus α= F(εB)◦ηF(B) ◦α= F(α̂)◦ηA, which shows that α̂
satisfies the condition of the universal property of an initial morphism.

To show the uniqueness of α̂, let β :G(A)→B be a morphism such that α=F(β)◦ηA.
Consider the diagram

G(A) G◦F ◦G(A) G(A)

G◦F(B) B

G(ηA)

G(α)

εG(A)

G◦F(β) β

εB

whose triangle on the left hand side commutes by our assumption on β and whose
square on the right hand side commutes by Lemma 7.3.3. By Proposition 7.3.4, we have
εG(A) ◦G(ηA) = idG(A), which implies that β = β ◦ εG(A) ◦G(ηA) = εB ◦G(α) = α̂. This
shows that α̂ is unique and that ηA : A→ F(Â) is indeed an initial morphism from A to
F. Thus (1), which completes the proof of the theorem.

Similarly, one can establish the following variant of Theorem 7.4.1, whose proof we
omit.
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Theorem 7.4.2. Let F : C→D be a functor. Then the following claims are equivalent.

(1) Every object A in D has a terminal morphism from F.

(2) The functor F has a right adjoint G : D→ C.

Example 7.4.3. We illustrate Theorems 7.4.1 and 7.4.2 in the cases of the functors
F : C→D considered in Example 7.1.2.

(1) Let F : Rings→ Sets be the forgetful functor. As shown in Example 7.1.2.(1),
every set A has an initial morphism to F, namely the polynomial ring Z[Ti | i ∈ A]
together with the map ηA : A→ Z[Ti | i ∈ A]. Thus Theorem 7.4.1 shows that the
functor F has a left adjoint G : Sets→ Rings, which sends a set A to the ring
G(A) = Z[Ti | i ∈ A] and a map α : A→ B to the ring homomorphism G(α) : Z[Ti |
i ∈ A]→ Z[Ti | i ∈ B] that maps Ti to Tα(i).

(2) Let D be the category whose objects are pairs (A,S) of a ring A with a multiplica-
tive subset S of A and whose morphisms α : (A,S)→ (A′S′) are ring homomor-
phisms α : A→ A′ with α(S)⊂ S′; cf. Example 7.1.2.(2). Let F : Rings→D be
the functor that sends a ring A to (A,A×) and a ring homomorphism to itself.

By Theorem 7.4.1, F has a left adjoint G, which sends an element (A,S) of D
to the ring S−1A and that sends a morphism α : (A,S)→ (A′,S′) in D to the ring
homomorphism αS : S−1A→ (S′)−1A′ that maps a

s to α(a)
α(s) .

(3) Let ∆ : Rings→ Rings×Rings be the diagonal functor; cf. Example 7.1.2.(3).
Since there is a terminal morphism from ∆ to every object (A,B) of Rings×Rings,
Theorem 7.4.2 shows that ∆ has a right adjoint Π : Rings×Rings → Rings,
which sends an object (A,B) in Rings×Rings to the ring Π(A,B) = A×B and a
morphism (α,β) : (A,B)→ (A′,B′) to the ring homomorphism (α,β) : A×B→
A′×B′.



Appendix A

Background and complementary
topics

A.1 Zorn’s Lemma
Zorn’s Lemma is reformulation of the axiom of choice. In this lecture, we assume the
validity of the axiom of choice, and we will use it in the form of Zorn’s Lemma at a few
instances. In the following, we introduce the necessary notions and formulate Zorn’s
Lemma.

Definition A.1.1. Let S be a set. A partial order on S is a relation 6, which a subset R
of S×S where we write a6 b if (a,b) ∈ R, that satisfies that

(1) a6 a; (reflexive)

(2) a6 b and b6 a implies a = b; (anti-symmetric)

(3) a6 b and b6 c implies a6 c (transitive)

for all a,b,c ∈ S. A total order on S is a partial order such that

(4) a6 b or b6 a (total)

for all a,b ∈ A. A partially ordered set is a set S together with a partial order R. A
chain in S is a totally ordered subset C of S, with respect to the restriction R∩ (C×C)
of R to C. An upper bound of C in S is an element b ∈ S such that a6 b for all a ∈C.
A maximal element of S is an element a ∈ S such that a6 b implies a = b for all b ∈ S.

Theorem A.1.2 (Zorn’s Lemma). Let S be a partially ordered set. If every chain in S
has an upper bound, then S has a maximal element.

The typical situation where we apply Zorn’s Lemma is that of a collection S of
subsets of a set X , together with the partial order that is defined by inclusion, i.e. A6 B
for A,B ∈ S if and only if A⊂ B as subsets of X .
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A.2 Topological spaces
Some exercises use the notion of topological spaces. We provide the necessary defini-
tions in this section.

Definition A.2.1. Let X be a set. A topology for X is a collection T subsets of X that
satisfies the following axioms.

(1) Both ∅ and X are in T.

(2) Finite intersections of subsets in T are in T.

(3) Arbitrary unions of subsets in T are in T.

A topological space is a set X together with a topology T, which we usual suppress
from the notation. An open subset of X is an element of T, and a closed subset of X is
the complement of an open subset. A basis for the X is a subset B of T such that every
open subset is the union of open subsets in B.

Let X and Y be topological spaces. A continuous map from X to Y is a map
f : X → Y such that f−1(U) is an open subset of X for every open subset U of Y .

Example A.2.2. A typical example is R together with the usual notion of open subsets,
for which the collection of bounded open intervals (a,b) = {c ∈| a < c < b} (with
a,b ∈ R) forms a basis. A map f : R→ R is continuous in the sense of Definition A.2.1
if and only if for every ε> 0 there is a δ > 0 such that | f (a)− f (b)|< δ for all a,b ∈ R
with |a−b|< ε. The latter characterization is the approach to continuous functions that
one typically sees as a first definition in a course in Analysis. We leave the proof of
these claims as an exercise.
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