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Preface

These lecture notes accompany a course that I am giving in the term March–June 2018 at IMPA.
I intend to add chapters accordingly to the progress of these lectures and to regularly put new
versions of these notes online. To make the changes between the different versions more visible,
each version will carry a distinct date on the front page. To make it possible to print these notes
chapter by chapter, chapters will start on odd pages and contain a partial bibliography. To make
changes in older parts of the lectures visible, each chapter carries the date of the last changes on
its initial page.

Aim of these notes

In these notes, we will introduce blueprints and blue schemes and explain how this theory can be
used to endow the tropicalization of a classical variety with a schematic structure.

Once the basic constructions are explained, we intend to discuss balancing conditions and
connections to related theories as skeleta of Berkovich spaces, toroidal embeddings and log-
structures. We put a particular emphasis on explaining open problems in this very young branch
of tropical geometry.

Main references

The central references for this course are the papers [GG14] and [GG16] by Jeffrey and Noah
Giansiracusa, [MR14] and [MR16] by Maclagan and Rincón, and [Lor15] by the author. There
will be plenty of secondary references, which we will cite at the appropriate places.

A useful complementary source are the lecture notes [YALE17] of a series of lectures at
YALE, which were given by various experts in the area and organized by Mincheva and Payne.

I am grateful for any kind of feedback that helps me to improve these notes!
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Chapter 1

Why tropical scheme theory?

chapter last edited on
March 12, 2018

In this first chapter, we explain the purpose of tropical scheme theory, its main achievements as
of today and some of the central question of this new branch of tropical geometry. At the end of
this chapter, we give a brief outline of the previsioned structure of the rest of these notes.

1.1 Tropical varieties

In brevity, a tropical variety is a balanced polyhedral complex. In this section, we explain this
definition, starting with the case of a tropical curve, which is easier to formulate than its higher
dimensional analogue.

Definition 1.1.1. A tropical curve (in Rn) is an embedded graph Γ in Rn with possibly unbounded
edges together with a weight function

m : EdgeΓ−→ Z>0

such that all edges have rational slopes and such that the following so-called balancing condition
is satisfied for every vertex p of Γ: for every edge e containing p, let ve ∈ Zn be the primitive
vector, which is the smallest nonzero vector pointing from p in the direction of e; then

∑
p∈e

m(e) · ve = 0.

Example 1.1.2. In Figure 1.1, we depict a tropical curve in R2, explaining the balancing
condition at the three vertices of the curve.

The generalization of the involved notions to higher dimensions requires some preparation
and leads us to the following definitions.

Definition 1.1.3. A halfspace in Rn is a subset of Rn of the form

H =
{
(x1, . . . ,xn) ∈ Rn

∣∣a1x1 + · · ·+anxn > b
}

with a1, . . . ,an,b ∈ R. The halfspace H is rational if a1, . . . ,an ∈Q.

Definition 1.1.4. A (rational) polyhedron P (in Rn) is an intersection of finitely many (rational)
halfspaces in Rn. A face of a polyhedron P is a nonempty intersection of P with a halfspace H
such that the boundary of H does not contain interior points of P.

1
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Figure 1.1: A tropical curve in R2 and the balancing condition

Note that the polyhedron P is a face of itself and that every face of a (rational) polyhedron is
again a (rational) polyhedron.

Definition 1.1.5. A polyhedral complex (in Rn) is a finite collection ∆ of polyhedra in Rn such
that the following two conditions are satisfied:

(1) each face of a polyhedron in ∆ is in ∆;

(2) the intersection of two polyhedra in ∆ is a face of both polyhedra or empty.

Definition 1.1.6. Let ∆ be a polyhedral complex. The support of ∆ is

|∆| =
⋃

P∈∆

P.

The dimension of ∆ is dim∆ = max{dimP |P ∈ ∆}. The polyhedral complex ∆ is equidimen-
sional if

|∆| =
⋃

dimP=dim∆

P

and ∆ is rational if every polyhedron P in ∆ is rational.

Exercise 1.1.7. Let H be a rational subvector space of Rn, i.e. H has a basis in Qn. Show that
the image of Zn ⊂Rn under the quotient map π : Rn→Rn/H is a lattice, i.e. a discrete subgroup
Λ that is isomorphic to Zk where k = n− dimH. The isomorphism Λ ' Zk extends to an
isomorphism Rn/H ' Rk of vector spaces, i.e. we can identify π with a surjection π′ : Rn→ Rk

that maps Zn to Zk. Show that the image π′(P) of a rational polyhedron P in Rn is a rational
polyhedron in Rk.

Let P be a rational polyhedron in Rn and x0 ∈ P. Show that the subvector space H spanned
by {x− x0|x ∈ P} is rational and does not depend on the choice of x0. Choose an isomorphism
Rn/H ' Rk as above. Conclude that the image P of P in Rk is a 0-dimensional rational
polyhedron. More generally, let Q be rational polyhedron that contains P as a face. Show that
the image Q of Q in Rk is a rational polyhedron of dimension dimQ−dimP.

We call the image Q under the quotient map π′ : Rn→ Rk, as considered in Exercise 1.1.7,
the image of Q modulo the affine linear span of P. If Q is a rational polyhedron of dimension
dimQ = dimP+1 that contains P as a face, then the image Q of Q in Rk is a one dimensional
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rational polyhedron that contains P as a boundary point. Thus we can speak of the primitive
vector vQ of Q at P, which is the smallest nonzero vector in Rk with integral coefficients that is
pointing from P in the direction of Q.

Definition 1.1.8. A tropical variety (in Rn) is an equidimensional and rational polyhedral
complex ∆ together with a weight function

m :
{

P ∈ ∆
∣∣dimP = dim∆

}
−→ Z>0

such that for every polyhedron P ∈ ∆ with dimP = dim∆−1, the top dimensional polyhedra in
∆ containing P satisfy the balancing modulo the affine linear span of P, i.e.

∑
P(Q

m(Q)vQ = 0

where P and Q are the images of P and Q modulo the affine linear span of P and where vQ is the
primitive vector of Q at P.

1.2 Tropicalization of classical varieties

Let k be a field.

Definition 1.2.1. A nonarchimedean absolute value of k is a function v : k→ R>0 such that for
all a,b ∈ k,

(1) v(0) = 0 and v(1) = 1;

(2) v(ab) = v(a)v(b);

(3) v(a+b)6max{v(a),v(b)}.

An nonarchimedean absolute value is trivial if v(a) = 1 for all a ∈ k×. Otherwise it is called
nontrivial. An nonarchimedean absolute value is discrete if v(k×) is a discrete subset of R>0.

A nonarchimedean field is an algebraically closed field k together with a nontrivial nonar-
chimedean absolute value v.

Exercise 1.2.2. Let v be a nonarchimedean absolute value on a field k. Show the following
assertions.

(1) If v is trivial, then v is discrete. If k is algebraically closed and v is discrete, then v is trivial.
Give an example of a discrete absolute value that is not trivial. If v is not discrete, then its
image in R>0 is dense.

(2) We have v(k×) ⊂ R>0 and v(−1) = 1. If v(a) 6= v(b), then v(a+b) = max{v(a),v(b)}.
Conclude that if ∑

n
i=1 ai = 0 in k, then at least two terms v(ak) and v(al) with k 6= l assume

the maximum max{v(ai)}.

For the rest of this chapter, we fix a nonarchimedean field (k,v). Let X ⊂ (k×)n be an
algebraic variety, i.e. the zero set of Laurent polynomials f1, . . . , fr ∈ k[T±1

1 , . . . ,T±1
n ].

Definition 1.2.3. The tropicalization of X is defined as the topological closure X trop = trop(X)
of the image of X under the map

trop : (k×)n Rn
>0 Rn.

(v,...,v) (log,...,log)
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Example 1.2.4. In Figure 1.2, we illustrate the tropicalization of a genus 1 curve E, embedded
sufficiently general in (k×)2. More precisely, we illustrate the tropicalization of the compactifi-
cation E of E, which embeds into the projective plane P2. This means that all unbounded edges
of the tropicalization of E gain a second boundary point, which we illustrate by bullets in Figure
1.2. Note that this picture suggests that tropicalizations preserve certain geometric invariants like
the genus.

−2 0 2 −2
0

2
4

−2

0

2 tropicalization

Figure 1.2: Tropicalization of an elliptic curve, including its points at infinity

Theorem 1.2.5 (Structure theorem for tropicalizations). Let (k,v) be a nonarchimedean field
and X ⊂ (k×)n an equidimensional algebraic variety. Then

(1) X trop = |∆| for a rational and equidimensional polyhedral complex ∆;

(2) X ⊂ (k×)n determines a weight function

m :
{

P ∈ ∆
∣∣dimP = dim∆

}
−→ Z>0

such that (∆,m) is a tropical variety.

The first part of the structure theorem has been proven by Bieri and Groves in their 1984
paper [BG84], which precedes tropical geometry by around 15 years and uses a slightly different
setup than we do in our statement. The second part has been proven by Speyer in his thesis
[Spe05]. A formulation of the structure theorem that is very close to ours appears in Maclagan
and Sturmfels’ book [MS15] as Theorem 3.3.6.

1.3 Two problems with the concept of a tropical variety

There are two oddities with the concept of a tropical variety that create difficulties for the devel-
opment of algebro-geometric tools for tropical geometry and their application to tropicalizations
of classical varieties.

The first problem is that the polyhedral complex ∆ with |∆|= X trop is not determined by the
classical variety X ⊂ (k×)n. In other words,

the tropicalization of a classical variety is not a tropical variety.

The second problem relates to the functions of a tropical variety. The explanation of this
issue requires some preliminary definitions.
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Definition 1.3.1. The tropical semifield is the set T= R>0 together with the addition

a+b = max{a,b}

and the usual multiplication
a ·b = ab

of nonnegative real numbers a,b.

Together with these operations T is indeed a semifield, i.e. it satisfies all of the axioms
of a field except for the existence of additive inverses. The tropical semifield allows for the
following reformulation of Definition 1.2.1: a nonarchimedean absolute value is a multiplicative
map v : k→ T that is subadditive, i.e. v(a+b)6 v(a)+ v(b) where the latter sum is taken with
respect to the addition in T.

Remark 1.3.2. In these lecture notes, we adopt the “max-times”-convention for the tropical
numbers, which is less common than the “max-plus” or the “min-plus”-convention. To explain,
the map log :T→ Rdefines an isomorphism of semirings between the tropical semifield T and the
max-plus-algebra R=(R∪{−∞},max,+). Multiplication of with (−1) defines an isomorphism
R→ R between the max-plus-algebra with the min-plus-algebra R= (R∪{∞},min,+).

A priori, it is a matter of choice, with which semifield one works. But depending on the
situation, some choices are more natural than others. When considering tropical varieties as
polyhedral complexes, then the piecewise linear structure of the tropical variety is only visible in
the logarithmic picture, i.e. one is led to work with the max-plus or the min-plus-algebra.

When working with tropical polynomials and tropical functions, in particular when compared
to classical polynomials and functions, then it is more natural and less confusing to work with
the max-times-convention.

Definition 1.3.3. The tropical polynomial algebra in T1, . . . ,Tn is the set

T[T1, . . . ,Tn] =
{

∑
J=(e1,...,en)

aJT e1
1 · · ·T en

n

∣∣aJ ∈ T and aJ = 0 for almost all J
}
,

which is a semiring with respect to the usual addition and multiplication rules for polynomials
where we apply the tropical addition aI +aJ = max{ai,aJ} to add coefficients.

A tropical polynomial f = ∑aJT e1
1 · · ·T en

n defines the function

f (−) : Tn −→ T.
x = (x1, . . . ,xn) 7−→ f (x) = max

{
aJxe1

1 · · ·xen
n
}

We are prepared to explain the second problem with tropical varieties. Namely, different
polynomials can define the same function, as demonstrated in the following example.

Example 1.3.4. Consider f1 = T 2 +1 and f2 = T 2 +T +1. Then

f1(x) = x2 +1 = max{x2,1}= max{x2,x,1}= f2(x)

for all x ∈ T.

In other words,

tropical functions are not the same as tropical polynomials.
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To understand why tropical scheme theory promises to resolve these digressions, let us have
a look at classical algebraic geometry.

For varieties over an algebraically closed field, Hilbert’s Nullstellensatz guarantees that
functions are the same as polynomials. However, if one tries to generalize the concept of a
variety to arbitrary field or even rings, one faces the same problem: different polynomials can
define the same function.

Grothendieck surpassed this problem with the invention of schemes. Since the functions of a
tropical variety do not form a ring, but merely a semiring, it is clear that Grothendieck’s concept
of a scheme does not find applications in tropical geometry.

However, F1-geometry has provided a theory of so-called semiring schemes, cf. the papers
[Dur07] of Durov, [TV09] of Toën-Vaquié and [Lor12] of the author. This theory and its
refinement in terms of blueprints provides an appropriate framework for tropical scheme theory.

1.4 Semiring schemes

In this section, we give an idea of the definition of a semiring scheme. Similar to a scheme, it is
built from the spectra of semirings. In order to understand this relation between tropical varieties
and semiring schemes that we have in mind, we explain this concept in analogy to classical
varieties and schemes, concentrating on the affine situation. More details about the construction
of semiring schemes will be explained in later parts of these notes.

Let k be an algebraically closed field and X ⊂ kn a variety, i.e. the zero set of polynomials
f1, . . . , fr ∈ k[T1, . . . ,Tn]. Let

I =
{

f ∈ k[T1, . . . ,Tn]
∣∣ f (x1, . . . ,xn) = 0 for all (x1, . . . ,xn) ∈ X

}
.

be its ideal of definition and A = k[T1, . . . ,Tn]/I its ring of regular functions.
The associated scheme is the spectrum of A, which is the set SpecA of all prime ideals of A

together with the topology generated by the principal open subsets

Uh = {p⊂ A |h /∈ p}

for h ∈ A and with the structure sheaf

O : {open subsets of SpecA} −→ Rings.
Uh 7−→ A[h−1]

We can recover the variety X from SpecA as follows. The ring of regular functions A =
k[T1, . . . ,Tn]/I equals the ring of global sections

O(SpecA) = A[1−1] = A.

The variety X is equal to the set of k-rational points of SpecA, i.e. we have a canonical bijection

X −→ Homk(A,k) = Homk(Speck,SpecA)

that sends a point x = (x1, . . . ,xn) of X to the evaluation map

evx : h 7→ h(x).

Its inverse sends a homomorphism f : A→ k to the point
(

f (T1), . . . , f (Tn)
)

of X .
The definition of SpecA extends to any semiring A as follows. There are natural extensions

of the notions of prime ideals and localizations from rings to semirings.



1.5. Scheme theoretic tropicalization 7

Definition 1.4.1. The spectrum of A is the set SpecA of all prime ideals of A together with the
topology generated by the principal open subsets

Uh = {p⊂ A |h /∈ p}

for h ∈ A and with the structure sheaf

O : {open subsets of SpecA} −→ Semirings
Uh 7−→ A[h−1]

A semiring scheme is a topological space together with a sheaf in the category of semiring
that is locally isomorphic to the spectra of semirings. A detailed definition of all this terminology
will be given in later chapters.

1.5 Scheme theoretic tropicalization

In this section, we give an outline of the Giansiracusa tropicalization, which associates with
a classical variety a semiring scheme whose T-rational points correspond to the set theoretic
tropicalization as considered in section 1.2. For the sake of simplicity, we explain this for
subvarieties of affine space opposed to suvarieties of a torus, which is the context of section 1.2.

We require some notation. For a multi-index J = (e1, . . . ,en), we write T J = T e1
1 · · ·T en

n and
xJ = xe1

1 · · ·xen
n . Let f = ∑aJT J ∈ k[T1, . . . ,Tn]. We define

f trop = ∑v(aJ)T J ∈ T[T1, . . . ,Tn].

Let X ⊂ kn a variety with ideal of definition I.

Definition 1.5.1. The Giansiracusa tropicalization of X is the semiring scheme

Tropv(X) = Spec
(
T[T1, . . . ,Tn]/ bendv(I)

)

where the bend relations bendv(I) are defined as

bendv(I) =
(

f trop ∼ f trop + v(bJ)T J
∣∣∣ f +bJT J ∈ I

)
.

The main result of Jeffrey and Noah Giansiracusa in [GG16] is the following connection to
the set theoretic tropicalization X trop of X , which stays in analogy to the corresponding result for
schemes and varieties over an algebraically closed field.

Theorem 1.5.2 (Jeffrey and Noah Giansiracusa ’13). We can recover the tropical variety X trop

as a set via a natural bijection

X trop ∼−→ HomT(SpecT,Tropv(X)).

Moreover, in case of a projective variety X , the Giansiracusa brothers associate with Tropv(X)
a Hilbert polynomial and show that it coincides with the Hilbert polynomial of X . This might be
seen as the first striking result of tropical scheme theory.

Diane Maclagan and Felipe Rincón have shown in [MR14] that the embedding of Tropv(X)
into the n-dimensional tropical torus remembers the weights of the tropical variety X trop, pro-
vided one has chosen the structure of a polyhedral complex. To wit, the embedding of a
variety X into (k×)n yields an embedding of Tropv(X) into the n-dimensional tropical torus
SpecT[T±1

1 , . . . ,T±1
n ].
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Theorem 1.5.3 (Maclagan-Rincón ’14). Assume that X ⊂ (k×)n is equidimensional. Then the
weight function m of any realization of X trop as a tropical variety (∆,m) is determined by the
embedding of Tropv(X) into SpecT[T±1

1 , . . . ,T±1
n ].

In the author’s paper [Lor15], the above results are refined and generalized by using blueprints
and blue schemes. We mention two applications of this refined approach: the Giansiracusa
tropicalization can be applied to more general situations than tropicalizations of subvarieties of
toric varieties; for instance, it is possible to endow skeleta of Berkovich spaces with a schematic
structure under certain additional hypotheses. Another feature is that the weight function of the
tropical variety is already encoded into the structure sheaf of the “blue tropical scheme”, which
opens the possibility for a theory of abstract tropical schemes, opposed to embedded tropical
schemes.

1.6 A central problem in tropical scheme theory

The aforementioned results give hope that the replacement of tropical varieties by tropical
schemes will allow for new tools in tropical geometry, such as sheaf cohomology or a cohomo-
logical interpretation of intersection theory. However, it is not at all clear what a good notion of
a “tropical scheme” might be.

The theory of semiring schemes comes with the notion of a T-scheme, which is a morphism
X → SpecT of semiring schemes. However, there are too many T-schemes to make this a useful
class. For example, every hyperplane in Rn can be realized as a T-scheme, and such subsets of
Rn cannot satisfy the balancing condition with respect to any polyhedral subdivision and any
choice of weight function. Even worse, every intersection of hyperplanes can be realized as
T-schemes, and such intersections include all bounded convex subsets of Rn, e.g. the unit ball.

This makes clear that we have to restrict our attention to a subclass of T-schemes in order
to obtain a useful class that could replace the class of tropical varieties. Maclagan and Rincon
make a suggestion for such a class, which is based on the observation that the ideal of definition
of the tropicalization of a classical variety is a valuated matroid. In [MR14] and [MR16], they
investigate the class of T-schemes whose ideal of definition is a valuated matroid and show
certain desirable properties like chain conditions for “tropical ideals” and the preservation of
Hilbert functions.

Unfortunately, this theory encounters some serious difficulties since the class of tropical
ideals is, a priori, too restrictive. For instance, the ideals of definition of some prominent spaces
in tropical geometry, like linear tropical spaces and Grassmannians, are not tropical ideals.
Moreover both the intersection and the sum of two tropical ideals fail to be a tropical ideal
in general, which provides obstacles for primary decompositions and intersection theory of
schemes, respectively.

It might be the case that there is natural way to associate a “generically generated” tropical
ideal with ideals occuring in the situations explained above, but this seems to be a difficult
problem. It might be the case that the class of tropical ideals, as considered in [MR14], is too
restrictive for a useful theory of “tropical schemes”.

In so far, we formulate the central problem of tropical scheme theory in the following way.
We would like to find a class C of T-schemes that satisfies the following criteria:

• C contains the tropicalizations of all classical varieties and for every tropical variety, C
contains a T-scheme representing it;
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• C contains “universally constructable T-schemes” such as tropical linear spaces and
tropical Grassmannians;

• the T-rational points of every T-scheme in C yields a tropical variety; in particular, this
involves a theory of balancing conditions for T-schemes;

• defining ideals of schemes in C are closed under intersections and sums;

• C allows for a dimension theory by considering chains of irreducible reduced T-schemes
in C; in particular, this involves the notion of an irreducible T-scheme.

A more comprehensive list of open problems in tropical scheme theory was compiled at a
workshop in April 2017 at the American Institute of Mathematics, see [AIM17] for a link to the
problem list.

1.7 Outline of the previsioned contents of these notes

The central goal of these notes is to explain the material of the previous sections in detail. This
includes reviewing some parts of “classical” tropical geometry and introducing semiring schemes,
monoid schemes and blue schemes. We intend to discuss the Giansiracusa tropicalization and
subsequent results from the papers [GG14] and [GG16] by Jeffrey and Noah Giansiracusa,
[MR14] and [MR16] by Maclagan and Rincón, and [Lor15] by the author.

If we achieve this central goal in time, then we intend to treat more advanced topics like
scheme theoretic skeleta of Berkovich spaces, schemes over the tropical hyperfield or families of
matroids.

The chapters of these notes will be grouped into parts. The first part reviews the algebraic
foundations, which are (ordered) semirings, monoids, blueprints, localizations, ideals and
congruences. The second part is dedicated to generalized scheme theory and contains the
constructions of semiring schemes, monoid schemes and blue schemes. The third part enters the
central the theme of these notes, which is scheme theoretic tropicalization.
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Algebraic foundations
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Chapter 2

Semirings

chapter last edited on
April 5, 2018

In this chapter, we will provide the necessary background on semirings for our purposes. A
standard source for the theory of semirings is Golan’s book [Gol99], which the reader might
want to confer as a secondary reference.

We illustrate the basic definitions and facts in numerous examples. Certain basic facts,
which are either easy to prove or allow for a proof analogous to the case of rings, will be left as
exercises.

2.1 The category of semirings

Definition 2.1.1. A (commutative) semiring (with 0 and 1) is a set R together with an addition
+ : R×R→ T , a multiplication · : R×R→ R and two constants 0 and 1 such that the following
axioms are satisfied:

(1) (R,+) is an associative and commutative semigroup with neutral element 0;

(2) (R, ·) is an associative and commutative semigroup with neutral element 1;

(3) (a+b)c = ac+bc for all a,b,c ∈ R;

(4) 0 ·a = 0 for all a ∈ R.

A morphism between semirings R1 and R2 is a map f : R1→ R2 such that f (0) = 0, f (1) = 1,
f (a+ b) = f (a)+ f (b) and f (ab) = f (a) · f (b) for all a,b ∈ R. We denote the category of
semirings by SRings.

Let R be a semiring. A subsemiring of R is a subset S that contains 0 and 1 and is closed
under sums and products. The unit group or units of R is the subset R× of multiplicatively
invertible elements together with the restriction of the multiplication of R to R×. A semifield is a
semiring R such that R× = R−{0}.

Note that the constants 0 and 1 of a semiring R are uniquely determined as the neutral
elements of addition and multiplication, respectively. In some examples, we take the liberty to
omit an explicit description of these constants. Note further that the multiplication of R does
indeed restrict to a multiplication R××R×→ R×, which turns R× into a multiplicative group.

Remark 2.1.2. Similar to the notion of a ring, the notion of a semiring is not standardized in the
literature. In other texts, the reader will find noncommutative semirings and semirings without 0
or 1. Similarly, semiring morphism might not required to preserve 0 or 1, which are properties
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that do not follow automatically from the other axioms. We will not encounter such weaker
notions of semirings in these notes.

Example 2.1.3. Every ring is tautologically a semiring. Examples of semirings that are not rings
are the following: the natural numbers N with respect to the usual addition and multiplication;
the nonnegative real numbers R>0 with respect to the usual addition and multiplication; and the
tropical numbers T.

Note that a subsemiring S of R is a semiring with respect to the restrictions of the addition
and multiplication of R. This includes the subsemiring of tropical integers OT = {a ∈ T|a6 1}
of T and the subsemiring of Boolean numbers B= {0,1} of OT.

Examples of morphisms of semirings are inclusions S ↪→ R of subsemirings into the ambient
semiring. Other examples are the following maps: f : T→ B with f (a) = 1 for all a 6= 0;
g : N→ B with g(a) = 1 for all a 6= 0; h : OT→ B with h(a) = 0 for all a 6= 1.

Exercise 2.1.4. Show that the min-plus-algebra R and the max-plus-algebra R, as defined in Re-
mark 1.3.2, are semifields. What are the neutral elements for addition and multiplication? Show
that the logarithm defines an isomorphism of semirings log : T→ R. Show that multiplication
with −1 defines an isomorphism of semirings (−1) : R→ R.

Let X be a closed subset of Rn. Show that the set Fun(X ,R) of functions from X to R
inherits the structure of a semiring from the addition and multiplication in R. Let CPL(X) be
the smallest subring of Fun(X ,R) that contains all functions of the type ax+b with a ∈ Z and
b ∈ T. Show that CPL(X) consists of all convex piecewise linear functions f : X → R with
integer slopes for which there is a finite covering of X by closed subsets Zi such that f |Zi is linear
for each i.

Exercise 2.1.5. Let f1 : S→ R1 and f2 : S→ R2 be two morphisms of semirings. Define the
tensor product R1⊗S R2 as the set of finite sums ∑ai⊗bi of tensors ai⊗bi of elements ai ∈ R1
and bi ∈ R2, subject to the same relations as in the case of the tensor product of rings. Show that
this forms a semiring that comes with morphisms ιi : Ri→ R1⊗S R2 (i = 1,2), sending a ∈ R1 to
a⊗1 and b ∈ R2 to 1⊗b, respectively.

Formulate and prove the usual properties of the tensor product: (1) The tensor product is
the colimit (or pushout) of the morphism f1 and f2; (2) every bilinear morphism from R1×R2
defines a unique morphism from R1⊗R2; (3) the functor −⊗S R is left adjoint to the functor
HomS(R,−).

Exercise 2.1.6. Show that the category of semirings is complete and cocomplete. More precisely
show the following.

(1) Show that the natural numbers N form an initial object and that the trivial ring {0 = 1}
forms a terminal object in SRings.

(2) Let {Ri}i∈I be a family of semirings. Then the Cartesian product ∏I∈I Ri together with
componentwise addition and multiplication is a semiring, and the projections π j : ∏Ri→
R j are semiring homomorphisms. The semiring ∏I∈I Ri together with the projections π j is
a product of the Ri.

(3) Let f ,g : R1→ R2 be two morphisms of semirings. Show that eq( f ,g) = {a ∈ R1| f (a) =
g(a)} is a subsemiring of R1 and that the eq( f ,g) together with the inclusion eq( f ,g)→R1
is an equalizer of f an g.
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(4) Let f ,g : R1→ R2 be two morphisms of semirings. Show that there exists a coequalizer of
f and g. Hint: Use Lemma 2.4.8 to show that there exists a congruence generated by the
relations f (a)∼ g(a) where a ∈ R1.

(5) Let {Ri}i∈I be a finite family of semirings. Show that it has a coproduct, which we denote
by
⊗

i∈I Ri. Hint: Use filtered colimits (i.e. “unions”) of finite tensor products over N.

Exercise 2.1.7. Show that a morphism f : R1 → R2 is a monomorphism if and only if it is
injective. Show that f is an isomorphism if and only if f is bijective. Show that every surjective
morphism is an epimorphism. Give an example of an epimorphism that is not surjective (hint: cf.
Exercise 2.7.3).

Exercise 2.1.8. Let f : R→ S be a morphism of semirings. Show that the set theoretic image
im f = f (R) is a subsemiring of S. Show that im f together with the restriction f ′ : R→ im f
of f and the inclusion im f → S is the categorical image of f . Conclude that every morphism
factors into an epimorphism followed by a monomorphism.

2.2 First properties

We list some first properties that characterize important subclasses of semirings.

Definition 2.2.1. A semiring R is

• without zero divisors if for any a,b ∈ R, the equality ab = 0 implies that a = 0 or b = 0;

• integral (or multiplicatively cancellative) if 0 6= 1 and for any a,b,c ∈ R the equality
ac = bc implies c = 0 or a = b;

• strict if a+b = 0 implies a = b = 0 for all a,b ∈ R;

• (additively) cancellative if for any a,b,c ∈ R the equality a+ c = b+ c implies a = b;

• (additively) idempotent if 1+1 = 1.

Remark 2.2.2. While most of the above notions are standard and self-explanatory, the attribute
“integral” has been used for a variety of different properties of a semiring like being without zero
divisors, not being a product of two nontrivial semirings or having a unique maximal element
with respect to a certain partial order.

Since “multiplicatively cancellative” seems to awkward as terminology, and its literal mean-
ing does not indicate that 0 6= 1, we avoid this latter terminology in this text.

The justification for our usage of “integral” stems from the historical origin of the term
“integral domain” (“Integritätsbereich” after Kronecker), which was used for generalizations of
the integers to certain subrings of number fields, which are called rings of integers nowadays.1

We will see in Exercise 2.7.4 that a semiring is integral (in our sense) if and only if it is isomorphic
to a subsemiring of a semifield.

Lemma 2.2.3. Let R be a semiring.

(1) If 0 = 1, then R is trivial, i.e. R consists of the single element 0 = 1.

(2) If R is idempotent and cancellative, then R is trivial.

1For more details on the origins of “integral domain”, see the answer of “t.b.” in https://math.

stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from#46026.

https://math.stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from#46026
https://math.stackexchange.com/questions/45945/where-does-the-term-integral-domain-come-from#46026
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(3) If R is idempotent, then a+a = a for all a ∈ R.

(4) If R is idempotent, then R is strict.

(5) If R is integral, then R is without zero divisors.

Proof. If 1 = 0, then we have for every a ∈ R that a = 1 ·a = 0 ·a = 0. Thus (1).
If R is idempotent and cancellative, then 1+1 = 1 = 1+0 implies 1 = 0. Thus (2).
If 1+1 = 1, then we have for every a ∈ R that a+a = a(1+1) = a ·1 = a. Thus (3).
If R is idempotent and a+b = 0, then we have a = a+a+b = a+b = 0 and similarly b = 0.

Thus (4).
If R is integral and ab = 0, then ab = 0 = 0 ·b implies b = 0 or a = 0. Thus (5).

Note that a nontrivial semiring without zero divisors does not have to be integral, in contrast
to the situation for rings. An example verifying this claim is the tropical polynomial ring T[T ],
cf. Exercise 2.4.5; see Exercise 2.3.4 for another example.

Exercise 2.2.4. Verify which of the semirings from Example 2.1.3 and Exercise 2.1.4 are without
zero divisors, integral, strict, cancellative or idempotent.

Exercise 2.2.5. Show that the morphism ι : R→ R⊗N Z, sending a to a⊗ 1, satisfies the
following properties: RZ = R⊗NZ is a ring and every semiring morphism f : R→ S into a ring
S factors uniquely through ι. Show that R is cancellative if and only if ι : R→ RZ is injective.
Show that R contains an additive inverse of 1, i.e. an element a such that 1+a = 0, if and only if
R is a ring. Show that in this case ι : R→ RZ is an isomorphism.

2.3 Semigroup algebras and polynomial semirings

Definition 2.3.1. Let R be a semiring and A a multiplicatively written abelian semigroup with
neutral element 1A. The semigroup algebra of A over R is the semigroup ring R[A] of finite
R-linear combinations ∑raa of elements a ∈ A, i.e. the sum contains only finitely many nonzero
coefficients ra ∈ R. The addition of R[A] is defined by the formula

[
∑raa

]
+
[
∑saa

]
= ∑(ra + sa)a

and the product is defined by the formula

[
∑raa

]
·
[
∑saa

]
= ∑

a=bc
(rb · sc)a.

The zero of R[A] is the empty sum 0, i.e. the linear combination ∑raa with ra = 0 for all a, and
the one of R[A] is the linear combination 1 = ∑raa for which r1A = 1 and ra = 0 for a 6= 1A.

If A is the free abelian semigroup on the set of generators {Ti}i∈I , then we write R[A] =
R[Ti]i∈I or R[A] = R[T1, . . . ,Tn] if I = {1, . . . ,n}. We call R[Ti] the free algebra over R in {Ti} or
the polynomial semiring over R in {Ti}.

We allow ourselves to omit zero terms from the sums ∑raa, i.e. we may write sb+ tc for
the element ∑raa of R[A] with rb = b, rc = t and ra = 0 for a 6= b,c. We simply write a for the
element 1a of R[A] and r for the element r1A of R[A].
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Exercise 2.3.2. Show that R[A] is a semiring. Show that the map ιR : R→ R[A] with ιR(r) = r
is an injective morphism of semirings. Show that the map ιA : A→ R[A] with ιA(a) = a is a
multiplicative map, i.e. ιA(1A) = 1 and ιA(ab) = ιA(a) · ιA(b) for all a,b ∈ A. Show that for
every semiring morphism fR : R→ S and every multiplicative map fA : A→ S, there is a unique
semiring morphism f : R[A]→ S such that fA = f ◦ ιA and fR = f ◦ ιR. Use this to formulate and
prove the universal property for a polynomial semiring over R.

Exercise 2.3.3. Let R be a semiring and A an abelian semigroup with neutral element. Show
that R[A]' N[A]⊗N R.

Exercise 2.3.4. Let A = {1, ε} be the semigroup with ε2 = ε and B the Boolean numbers (cf.
Example 2.1.3). Show that B[A] has 4 elements. Determine the addition and multiplication table
for B[A]. Show that B[A] is without zero divisors, but not integral.

2.4 Quotients and congruences

Definition 2.4.1. Let R be a semiring. A congruence on R is an equivalence relation c on R that
is additive and multiplicative, i.e. (a,b) and (c,d) in c imply (a+ c,b+d) and (ac,bd) in c for
all a,b,c,d ∈ R.

Exercise 2.4.2. Let R be a ring. Show that for every ideal I of R, the set {(a,b)|a−b ∈ I} is a
congruence on R and that every congruence is of this form.

Exercise 2.4.3. Let k,n ∈ N. Show that the set

ck,n =
{
(m+ rk,m+ sk) ∈ N×N

∣∣m,r,s ∈ N and m> n or r = s = 0
}

is a congruence on N and that every congruence of N is of this form.

Given a congruence c on R, we often write a ∼c b, or simply a ∼ b, if there is no danger
of confusion, to express that (a,b) is an element of c. The following proposition shows that
congruences define quotients of semirings.

Proposition 2.4.4. Let R be a semiring and c be a congruence. Then the associations [a]+ [b] =
[a+b] and [a] · [b] = [ab] are well-defined on equivalence classes [a] of c and turn the quotient
R/c into a semiring with zero [0] and one [1].

The quotient map π : R→ R/c is a morphism of semirings that satisfies the following
universal property: every morphism f : R→ S of semiring such that f (a) = f (b) whenever a∼ b
in c factors uniquely through π.

Proof. Consider a∼ a′ and b∼ b′. Then a+b∼ a′+b′ and ab∼ a′b′. Thus the addition and
multiplication of R/c does not depend on the choice of representative and is therefore well-
defined. The properties of a semiring follow immediately, including the characterization of the
zero as [0] and the one as [1]. That π : R→ R/c is a semiring homomorphism is tautological by
the definition of R/c.

Let f : R→ S be a semiring morphism such that f (a) = f (b) whenever a∼ b in c. For f to
factor into f ◦π for a semiring morphism f : R/c→ S, it is necessary that f ([a]) = f ◦π(a)= f (a).
This shows that f is unique if it exists. Since a ∼ b implies f (a) = f (b), we conclude that f
is well-defined as a map. The verification of the axioms of a semiring morphism are left as an
exercise.
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Exercise 2.4.5. Let n> 1. Show that R = T[T1, . . . ,Tn] is without zero divisors, but not integral.
Show that the relation {( f ,g) ∈ R×R| f (x) = g(x) for all x ∈ Tn} is a congruence on R; cf.
section 1.3 for definition of f (x). Show that the quotient R/c is integral and isomorphic to
CPL(Rn); cf. Exercise 2.1.4 for the definition of CPL(Rn).

Conversely, every quotient is characterized by a congruence. More precisely, for every
semiring morphism, there is a congruence that characterizes which elements in the domain
become identified in the image.

Definition 2.4.6. Let f : R→ S be a morphism of semirings. The congruence kernel of f is the
relation c( f ) = {(a,b) ∈ R×R| f (a) = f (b)} on R.

Lemma 2.4.7. The congruence kernel c( f ) of a morphism f : R→ S of semirings is a congruence
on R.

Proof. That c= c( f ) is an equivalence relation follows from the following calculations: f (a) =
f (a) (reflexive); f (a) = f (b) implies f (b) = f (a) (symmetry); f (a) = f (b) and f (b) = f (c)
imply f (a) = f (c) (transitive). Additivity and multiplicativity follow from: f (a) = f (b) and
f (c) = f (d) imply f (a+c) = f (a)+ f (c) = f (b)+ f (d) = f (b+d) and f (ac) = f (a) · f (c) =
f (b) · f (d) = f (bd). This shows that c is a congruence.

As a consequence of this lemma, we see that for a semiring R, the associations
{

congruences on R
}
←→

{
quotients of R

}

c 7−→ R→ R/c
c(π) 7−→ π : R� R′

are mutually inverse bijections. Note that strictly speaking a quotient of R is an equivalence class
of surjective semiring morphisms R→ R′ where two surjections π1 : R→ R1 and π2 : R→ R2
are equivalent if there exists an isomorphism f : R1→ R2 such that f ◦π2 = π2.

We will see in section 2.5 that we do not have a correspondence between quotients and ideals,
as in the case of rings. In so far, one has to work with congruences when one wants to describe
quotients of semirings.

Lemma 2.4.8. Let R be a semiring and S⊂ R×R a subset. Then there is a smallest congruence
c= 〈S〉 containing S. The quotient map π : R→ R/〈S〉 satisfies the following universal property:
every morphisms f : R→ R′ with the property that f (a) = f (b) whenever (a,b) ∈ S factors
uniquely through π.

Proof. It is readily verified that the intersection of congruences is again a congruence. As
a consequence, the intersection of all congruences containing S is the smallest congruence
containing S.

Given any morphism f : R→ R′ with the property that f (a) = f (b) whenever (a,b) ∈ S,
then the congruence kernel c( f ) must contain S and thus c= 〈S〉. Using Proposition 2.4.4, we
see that f factors uniquely through π.

This lemma shows that we can construct new semirings from known ones by prescribing a
number of relations: let R be a semiring and {ai ∼ bi} a set of relations on R, i.e. S = {(ai,bi)}
is a subset of R×R. Then we define R/〈ai ∼ bi〉 as the quotient semiring R/〈S〉.

Exercise 2.4.9. Show that B[T ]/〈T 2 ∼ T 〉 is isomorphic to the semigroup algebra B[A] where
A = {1, ε} is the semigroup with ε= ε2; cf. Exercise 2.3.4. Determine all congruences on B[A].
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Exercise 2.4.10. Let R be a semirings and c a congruence on R. Show that c is a subsemiring of
R×R containing the image of the diagonal map ∆ : R→ R×R.

Let f : R→ S be a homomorphism of semirings. Show that the congruence kernel of f
together with the inclusion into R×R is the equalizer of the morphisms f ◦pr1 and f ◦pr2 from
R×R to S where pri : R×R→ R is the i-th canonical projection (i = 1,2).

2.5 Ideals

While the concept of congruences is the correct generalization of ideals from rings to semirings
that characterizes quotients of semirings, there are other more straight-forward generalizations
of ideals, which carry over other properties from rings to semirings. In this section, we will
examine two such notions: ideals and k-ideals.

Definition 2.5.1. Let R be a semiring. An ideal of R is a subset I of R such that 0, ac and a+b
are elements of I for all a,b ∈ I and c ∈ R. A k-ideal or a subtractive ideal of R is an ideal I of R
such that a+ c = b with a,b ∈ I and c ∈ R implies c ∈ I.

Once we make sense of the concept of a (semi)module over R, we could characterize an ideal
of R as a submodule of R. The relevance of (prime) ideals of semirings lies in the fact that they
are the good notion of points of the spectrum of R. We will come back to this in the chapter on
semiring schemes.

The relevance of k-ideals is easier to explain. Namely, they form the class of subsets that is
characterized as the 0-fibres, or kernels, of semiring morphisms. We assume, without evidence,
that the “k” in “k-ideal” stands for “kernel”. The name k-ideal seems to be coined by Henriksen
in [Hen58].

Definition 2.5.2. Let f : R→ S be a semiring morphism. The (ideal) kernel of f is the inverse
image ker( f ) = f−1(0) of 0.

Let S be a subset of R. The congruence generated by S is the congruence c(S) generated by
{(a,0)|a ∈ S}.

Proposition 2.5.3. The kernel ker( f ) of a morphism of semiring f : R→ S is a k-ideal and every
k-ideal appears as a kernel. More precisely, if I is an ideal of R and c= c(I) is the congruence
generated by I, then a∼c b if and only if there are elements c,d ∈ I such that a+ c = b+d. The
ideal I is an k-ideal if and only if I is the kernel of π : R→ R/c.

Proof. We begin with the verification that ker( f ) is a k-ideal. Clearly 0 ∈ ker( f ). Let a,b ∈
ker( f ) and c ∈ R. Then f (ac) = f (a) f (c) = 0 · f (c) = 0 and f (a+b) = f (a)+ f (b) = 0, thus
ac and a+b are in ker( f ). If a+ c = b, then f (c) = 0+ f (c) = f (a)+ f (c) = f (b) = 0 shows
that c ∈ ker( f ). Thus ker( f ) is a k-ideal.

In order to verify the second claim of the proposition, we begin with showing that the relation

c′ =
{
(a,b) ∈ R×R |a+ c = b+d for some c,d ∈ I

}

is a congruence. Reflexivity and symmetry are immediate from the definition. Transitivity is
shown as follows: if a∼c′ b∼c′ b′, then there are elements c,d,c′,d′ ∈ I such that a+ c = b+d
and b+ c′ = b′+ d′. Adding c′ to the former and d to the latter equation yields a+ c+ c′ =
b+d + c′ = b′+d +d′. Since I is closed under sums, c+ c′ and d +d′ are in I and thus a∼c′ b′.
This shows that c′ is an equivalence relation.
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We continue with the verification of additivity and multiplicativity of c′. Let a ∼c′ b and
a′ ∼c′ b′, i.e. a+ c = b+d and a′+ c′ = b′+d′ for some c,d,c′,d′ ∈ I. Adding these equations
yields a+a′+ c+ c′ = b+b′+d +d′ where c+ c′ and d +d′ are in I. Thus a+a′ ∼c′ b+b′,
which establishes additivity. Multiplying these equations yields

aa′+ac′+a′c+ cc′ = (a+ c)(a′+ c′) = (b+d)(b′+d′) = bb′+bd′+b′d +dd′.

Since ac′+a′c+cc′ and bd′+b′d+dd′ are in I, we have aa′∼c′ bb′, which shows multiplicativity
of c′. Thus c′ is a congruence.

As the next step, we verify that c′ is equal to the congruence c generated by I. Since
a+0 = 0+0, we see that c′ contains the generating set {(a,0)|a ∈ I} of c. Thus c is contained
in c′. Conversely, consider a relation a ∼c′ b in c′, i.e. a+ c = b+ d for some b,d ∈ I. Then
b∼c 0∼c d and, by the additivity of c,

a = a+0 ∼c a+ c = b+d ∼c b+0 = b,

i.e. a∼c b in c. This shows that c= c′, as claimed.
Finally, we show that I is a k-ideal if and only if it is the kernel of π : R→ R/c, i.e. I = {a ∈

R|a∼c 0}. By the definition of c= c(I), it is clear that I ⊂ ker(π). By the characterization of c
as c′, we have a ∈ ker(π) if and only if there are elements c,d ∈ I such that a+ c = 0+d = d.
Thus I = ker(π) if and only if I is a k-ideal. This finishes the proof of the proposition.

As a consequence, proven in Corollary 2.5.4 below, we see that for every subset S of a
semiring R, there is a unique smallest (k-)ideal containing S. We call this (k-)ideal the (k-)ideal
generated by S and denote ideal generated by S by 〈S〉 and the k-ideal generated by S by 〈S〉k.

Corollary 2.5.4. Let R be a semiring and S a subset of R. The ideal generated by S is

〈S〉 =
{

∑aisi
∣∣ai ∈ R,si ∈ S∪{0}

}
.

The k-ideal generated by S is

〈S〉k =
{

c ∈ R
∣∣ ∑aisi + c = ∑b jt j for some ai,b j ∈ R,si, t j ∈ S∪{0}

}
.

Proof. Let I = {∑aisi|ai ∈ R,si ∈ S∪{0}}. It is clear that S⊂ I ⊂ 〈S〉. It follows that 〈S〉= I if
we can show that I is an ideal. This can be shown directly. Clearly, 0 ∈ I and I is closed under
addition. Given an element a = ∑aisi in I and b ∈ R, then ab = ∑(aib)si is in I. This shows that
I is an ideal and proves the first claim of the corollary.

Note that the right hand side of the last equation of corollary is equal to J = {c ∈ R|a+ c =
b for some a,b ∈ I} where I is as above. Let c = c(I) be the congruence generated by I and
π : R→ R/c the quotient map. It follows from Proposition 2.5.3 that J is the kernel of π and thus
a k-ideal. Since obviously S⊂ J ⊂ 〈S〉k, we conclude that 〈S〉k = J. This completes the proof of
the corollary.

To conclude, ideals, k-ideals and congruences are different generalizations of ideals to
semirings, which do not coincide in general. There are ways to pass from one class to the other,
which follows from our previous results.

Namely, with a congruence c on a semiring R, we can associate the kernel of the projection
πc : R→ R/c, which is a k-ideal; with a k-ideal I, we can associate the congruence c(I) generated
by I. We have that the kernel of R→ R/c(I) is I and the congruence c(kerπc) is contained in c,
but in general not equal to c.
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On the other end, every k-ideal is tautologically an ideal. With an ideal I of R, we can
associate the smallest k-ideal containing I, which is the kernel of R→ R/c(I). We summarize
this discussion in the following picture.

“submodules” “kernels” “quotients”
{

ideals of R
} {

k-ideals of R
} {

congruences on R
}

Exercise 2.5.5. Describe all ideals, k-ideals and congruences for N; cf. Exercise 2.4.3. Describe
the maps from the above diagram in this example.

Exercise 2.5.6. Let A = {1, ε} be the semigroup with ε2 = ε and R =B[A] the semigroup algebra,
which has been already the protagonist of Exercises 2.3.4 and 2.4.9. Determine all ideals, k-ideals
and congruences of B[A] and describe the above maps between ideals, k-ideals and congruences
explicitly.

Exercise 2.5.7. Let R be an idempotent semiring, I an ideal of R and c = c(I) the associated
congruence. Show that a∼c b if and only if a+ c = b+ c for some c ∈ I. Conclude that I is a
k-ideal if and only if a+ c = c with c ∈ I implies a ∈ I.

Exercise 2.5.8. Let R be a cancellative semiring and I an ideal of R. Let RZ = R⊗N Z and
ι : R→ RZ be the morphism that sends a to a⊗1. Let J = 〈ι(I)〉 be the ideal of RZ generated by
ι(I). Show that I is a k-ideal if and only if I = ι−1(J). Find an example of a non-cancellative
semiring R with k-ideal I such that I is not equal to ι−1

(
〈ι(I)〉

)
.

2.6 Prime ideals

In the last two sections of this chapter, we turn to topics of relevance for scheme theory, which
are prime ideals and localizations, respectively.

Definition 2.6.1. A (k-)ideal I of R is proper if it is not equal to R. It is maximal if it is proper
and if I ⊂ J implies I = J for any other proper (k-)ideal. It is prime if its complement S = R− I
is a multiplicative subset of R.

Note that a k-ideal I is a prime k-ideal if and only if it is a prime ideal. In so far, we can
use the attribute “prime” unambiguously for ideals and k-ideals. Note, however, that the k-ideal
generated by a prime ideal does not need to be prime; we provide proof in Example 2.6.2 below.

The situation for maximal (k-)ideals is more subtle. A k-ideal that is a maximal ideal is
tautologically a maximal k-ideal. But the converse fails to be true in general, as demonstrated in
Example 2.6.2. This means that we have to make a clear distinction between maximal ideals and
maximal k-ideals.

Example 2.6.2. Consider the semiring R = B[T ]/〈T 2 ∼ T ∼ T +1〉, which is a quotient of the
semiring B[A] from Exercises 2.3.4, 2.4.9 and 2.5.6. It consists of the elements 0,1,T and its
unit group is R× = {1}. The proper ideals of R are (0) = {0} and (T ) = {0,T}, which are both
prime ideals, but only (0) is a k-ideal.

This example demonstrates the following effects:

• (0) is a maximal k-ideal, but it is not a maximal ideal since it is properly contained in the
proper ideal (T ).
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• (T ) is a prime ideal, but the k-ideal generated by (T ), which is R, is not a prime k-ideal.

• The quotient R/(0) of R by the maximal k-ideal (0), which is equal to R, is not a semifield.

• The quotient R/(T ) of R by the k-ideal generated by (T ), which is the trivial semiring
R/R = {0}, is not a semifield.

Being warned that (k-)ideals for semirings fail to satisfy certain properties that we are used
to from ideal theory of rings, we begin with the proof of properties that extend to the realm of
semirings.

Lemma 2.6.3. Let R be a semiring and I a k-ideal of R. Then I is prime if and only if R/I is
nontrivial and without zero divisors.

Proof. The k-ideal I is prime if and only if for all a,b ∈ R, ab ∈ I implies that a ∈ I or b ∈ I.
Passing to the quotient R/I, this means that [ab] = [0] implies [a] = [0] or [b] = [0] where we use
that the kernel of R→ R/I is I, cf. Proposition 2.5.3. This latter condition is equivalent to R/I
being nontrivial and without zero divisors.

Remark 2.6.4. As shown in Example 2.6.2, the usual characterization of maximal ideals as
those ideals whose quotient is a field does not hold for semirings. We can only give the following
quite tautological characterization of maximal k-ideals: a k-ideal I is maximal if and only if the
zero ideal {0} of R/I is a maximal k-ideal.

Lemma 2.6.5. Every maximal ideal of a semiring is a prime ideal.

Proof. Let R be a semiring and m a maximal ideal. Consider a,b ∈ R such that ab ∈ m, but
a /∈m. We want to show that b ∈m.

Since m is maximal and does not contain a, the set S =m∪{a} generates the ideal (1) = R.
By Corollary 2.5.4, this means that 1 = ∑ekck for some ck ∈ S and ek ∈ R. Note that bdk ∈ m
since either dk ∈ m or dk = a. Thus bekdk ∈ m and b = b · 1 = ∑bekckis an element of m as
claimed, which completes the proof.

Lemma 2.6.6. Every maximal k-ideal of a semiring is a prime k-ideal.

Proof. We can prove this affirmation along the lines of the proof of Lemma 2.6.5. However, in
the present case, R is equal to the k-ideal generated by S =m∪{a} as a k-ideal. By Corollary
2.5.4, this means that ∑ekck +1 = ∑ fldl for some ck,dl ∈ S and ek, fl ∈ R. Multiplying with b
yields ∑bekck +b = ∑b fldl . As reasoned in the proof of Lemma 2.6.5, bekck and b fldl are in m,
and since m is a k-ideal, b ∈m as desired.

Lemma 2.6.7. Let f : R→ R′ be a morphism of semirings and I an ideal of R′. Then f−1(I) is
an ideal of R. If I is prime, then f−1(I) is prime. If I is a k-ideal, then f−1(I) is a k-ideal.

Proof. We verify that f−1(I) is an ideal. Obviously, it contains 0. If a,b ∈ f−1(I) and c ∈ R,
then f (a+b) = f (a)+ f (b) ∈ I and f (ca) = f (c) f (a) ∈ I. Thus a+b,ca ∈ f−1(I). This shows
that f−1(I) is an ideal.

Assume that I is prime, i.e. S = R′− I is a multiplicative set. Then f−1(S) = R− f−1(I) is a
multiplicative set of R and thus f−1(I) is a prime ideal of R.

Assume that I is a k-ideal and consider an equality a+ c = b in R with a,b ∈ f−1(I). Then
f (a)+ f (c) = f (b) and f (a), f (b) ∈ I, which implies that f (c) ∈ I. Thus c ∈ f−1(I), which
shows that f−1(I) is a k-ideal.
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Remark 2.6.8. There is also a concept of prime congruences. More precisely, there are two
possible variants. Let c be a congruence on R. Then c is a weak prime congruence on R if R/c is
nontrivial and without zero divisors, and c is a strong prime congruence on R if R/c is integral.

However, we do not intend to discuss congruence schemes in these notes and therefore do
not pursue the topic of prime congruences. Note that as of today, there is no satisfying theory of
congruences schemes for semirings, but that such a theory relies on solving some open problems
concerning the structure sheaf of congruence spectra. To explain this issue in more fancy words:
one is led to work with a Grothendieck pre-topology on the category of semirings that is not
subcanonical. This requires a sophisticated setup that establishes substitutes of certain standard
facts for subcanonical topologies.

Exercise 2.6.9. Determine all prime (k-)ideals, all maximal (k-)ideals and all weak and strong
prime congruences of N and B[A] where A = {1, ε} is the semigroup with ε2 = ε. Let f : N→ Z
be the inclusion of the natural numbers into the integers. Describe the map p→ f−1(p) from the
set of prime ideals of Z to the set of prime ideals of N explicitly. Is it injective? Is it surjective?

Exercise 2.6.10. Let R be a semiring and I a proper (k-)ideal of R. Show that R has a maximal
(k-)ideal that contains I. Hint: The usual proof for rings works also for this case. In particular,
the claim relies on the axiom of choice aka Zorn’s lemma.

Exercise 2.6.11. Let R be a semiring and I,J be ideals of R. We define their product I · J as the
ideal generated by {ab|a ∈ I,b ∈ J}. Show that an ideal p of R is prime if and only if I · J ⊂ p
implies I ⊂ p or J ⊂ p for all ideals I and J of R.

2.7 Localizations

Definition 2.7.1. Let R be a semiring and S ⊂ R be a multiplicative subset of R, i.e. a subset
that contains 1 and is closed under multiplication. The localization of R at S is the quotient
S−1R of S×R by the equivalence relation that identifies (s,r) with (s′,r′) whenever there is a
t ∈ S such that tsr′ = ts′r in R. We write r

s for the equivalence class of (s,r). The addition and
multiplication of S−1R are defined by the formulas

r
s
+

r′

s′
=

sr′+ s′r
ss′

and
r
s
· r
′

s′
=

r′r
ss′
.

The zero of S−1R is 0
1 and its one is 1

1 .
We write R[h−1] for S−1R if S = {hi}i∈N for an element h∈ R and call R[h−1] the localization

of R at h. We write Rp for S−1R if S = R−p for a prime ideal p of R and call Rp the localization
of R at p. Assume that S = R−{0} is a multiplicative subset of R. Then we write Frac(R) for
S−1R and call it the semifield of fractions of R.

If I is an ideal of R, then we write S−1I for the ideal of S−1R that is generated by { a
1 |a ∈ I}.

Lemma 2.7.2. Let R be a semiring, I an ideal of R and S a multiplicative subset of R. Then

S−1I =
{ a

s ∈ S−1R
∣∣a ∈ I,s ∈ S

}
.

Proof. It is clear that S−1I contains the set {a
1 |a ∈ I} of generators of S−1I. If we have proven

that the set IS = {a
s |a ∈ I,s ∈ S} is an ideal, then it follows that it contains S−1I. The reverse

inclusion follows from the observation that for a
s ∈ IS, we have a

s =
1
s · a

1 ∈ S−1I.
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We are left with showing that IS is an ideal. It obviously contains 0
1 . Given a

s ∈ IS and
b
t ∈ S−1R, then a

s · b
t =

ab
st ∈ IS since ab ∈ I. Given a

s ,
b
t ∈ IS, then a,b ∈ I and ta+ sb ∈ I. Thus

a
s +

b
t =

ta+sb
st is an element of IS. This verifies that IS is an ideal of S−1I and finishes the proof

of the lemma.

Exercise 2.7.3. Let R be a semiring and S a multiplicative subset of R. Show that the map
ιS : R→ S−1R, defined by ιS(a) = a

1 , is a morphism of semirings that maps S to the units of S−1R.
Show that it satisfies the usual universal property of localizations: every morphism f : R→ R′

of semirings that maps S to the units of R′ factors uniquely through ιS. Show that ιS is an
epimorphism.

Exercise 2.7.4. The subset S = R−{0} is a multiplicative subset if and only if R is nontrivial
and without zero divisors. Assuming that S is a multiplicative subset, show that FracR is a
semifield. Show that the morphism ιS : R→ Frac(R) is injective if and only if R is integral.
Describe an example where R→ Frac(R) is not injective.

Proposition 2.7.5. Let R be a semiring, S a multiplicative subset of R and ιS : R→ S−1R the
localization morphism. Then the maps

{
prime ideals p of R with p∩S = /0

}
←→

{
prime ideals of S−1R

}

p
Φ7−→ S−1p

ι−1
S (q)

Ψ 7−→ q

are mutually inverse bijections. A prime ideal p of R with p∩S = /0 is a k-ideal if and only if
S−1p is a k-ideal.

Proof. To begin with, we verify that both Φ and Ψ are well-defined. Let p be a prime ideal of R
such that p∩S = /0. Then S−1p= {a

s |a ∈ p,s ∈ S} by Lemma 2.7.2. Consider a
s ,

b
t ∈ S−1R such

that a
s · b

t = ab
st ∈ S−1p, i.e. ab ∈ p. Then a ∈ p or b ∈ p and thus a

s ∈ S−1p or b
t ∈ S−1p. This

shows that S−1p is a prime ideal of S−1R and that Φ is well-defined.
Let q be a prime ideal of S−1R. By Lemma 2.6.7, ι−1

S (q) is a prime ideal of R. Note that q is
proper and does not contain any element of the form s

t with s, t ∈ S since t
s · s

t = 1. Thus ι−1
S (q)

intersects S trivially. This shows that Ψ is well-defined.
We continue with the proof that Ψ◦Φ is the identity, i.e. ι−1

S (S−1p) = p for every prime ideal
p of R that does not intersect S. The inclusion p⊂ ι−1

S (S−1p) is trivial. The reverse inclusion can
be shown as follows. The set ι−1

S (S−1p) consists of all elements a ∈ R such that a
1 = b

s for some
b ∈ p and s ∈ S. This equation says that there is a t ∈ S such that tsa = tb. Since b ∈ p, we have
tsa = tb ∈ p. Since ts /∈ p, we have a ∈ p, as desired.

We continue with the proof that Φ◦Ψ is the identity, i.e. S−1ι−1
S (q) = q for every prime ideal

q of S−1R. The inclusion S−1ι−1
S (q)⊂ q is trivial. The reverse inclusion can be shown as follows.

Let a
s ∈ q. Then a

1 = s
1 · a

s ∈ q and a ∈ ι−1
S q. Thus a

s ∈ S−1ι−1
S (q), as desired. This concludes the

proof of the first claim of the proposition.
We continue with the proof that a prime ideal p of R with p∩S = /0 is a k-ideal if and only

if S−1p is a k-ideal. First assume that S−1p is a k-ideal and consider an equality a+ c = b with
a,b ∈ p. Then we have a

1 +
c
1 = b

1 with a
1 ,

b
1 ∈ S−1p. Since S−1p is a k-ideal, we have c

1 ∈ S−1p
and thus c ∈ p. This shows that p is a k-ideal.

Conversely, assume that p is a k-ideal and consider an equality a
s +

c
u = b

t with a
s ,

b
t ∈ S−1p.

This means that wtua+wstc = wsub for some w ∈ S. Since wtua and wsub are elements of the
k-ideal p, also wstc ∈ p. Since p is prime and wst /∈ p, we have c ∈ p and thus c

u ∈ S−1p, as
desired. This finishes the proof of the proposition.
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Let R be a semiring, p a prime ideal of R and S = R−p. Then S−1p is the complement of the
units of S−1R and therefore its unique maximal ideal.

Definition 2.7.6. Let R be a semiring and p a prime ideal of R. The residue field at p is the
semiring k(p) = Rp/c(S−1p) where S is the complement of p in R and c(S−1p) is the congruence
on Rp that is generated by S−1p.

Let p be a prime ideal of a semiring R. Then the residue field at p comes with a canonical
morphism R→ k(p), which is the composition of the localization map R→ Rp with the quotient
map Rp→ k(p). Note that the residue field k(p) can be the trivial semiring in case that p is not a
k-ideal. More precisely, we have the following.

Corollary 2.7.7. Let R be a semiring, p a prime ideal of R and S = R−p. Then the residue field
k(p) is a semifield if p is a k-ideal and trivial if not.

Proof. First assume that p is a prime k-ideal. Then p is the maximal prime ideal that does
not intersect S and thus m= S−1p is the unique maximal of S−1R. By Proposition 2.7.5, m is
a k-ideal. Thus the kernel of S−1R→ k(p) is m, which shows that k(p) is not trivial. Since
(S−1R)× = S−1R−m, we see that (S−1R)× → k(p)−{0} is surjective, which shows that all
nonzero elements of k(p) are invertible, i.e. k(p) is a semifield.

Next assume that p is not a k-ideal. By Proposition 2.7.5, m= S−1p is not a k-ideal, which
means that the kernel of S−1R→ k(p) is strictly larger than m and therefore contains a unit of
S−1R. This shows that k(x) must be trivial.

Corollary 2.7.8. Let R be a nontrivial semiring. Then there exists a morphism R→ k to a
semifield k.

Proof. By Exercise 2.6.10, R has a maximal k-ideal p. By Lemma 2.6.6, p is prime. By
Corollary 2.7.7, k(p) is a semifield, and the canonical morphism R→ k(p) verifies the claim of
the corollary.

Exercise 2.7.9. Let R be a semiring and p a prime k-ideal of R. Show that R/p is nontrivial and
without zero divisors and that k(p) is isomorphic to Frac(R/p). What happens if p is a prime
ideal that is not a k-ideal?
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Chapter 3

Monoids with zero

chapter last edited on
April 5, 2018

In this chapter, we introduce and investigate monoids with zero. As we will see that monoids
with zero behave like semirings in many aspects. In particular, most results of Chapter 2 have
an analogue for monoids with zero. We review these facts in the following and emphasize the
analogy with semirings by a similar formal structure of this chapter with Chapter 2. We will see,
though, that several facts and constructions are much simpler for monoids than for semirings.

3.1 The category of monoids with zero

Definition 3.1.1. A monoid with zero is a set A together with an associative and commutative
multiplication · : A×A→ A and two constants 0 and 1 such that 0 ·a = 0 and 1 ·a = a for all
a ∈ A. We often write ab for a ·b.

A morphism between monoids with zeros A1 and A2 is a map f : A1→ A2 such that f (0) = 0,
f (1) = 1 and f (ab) = f (a) f (b). This defines the category Mon of monoids with zero.

Let A be a monoid with zero. A submonoid of A is a multiplicatively closed subset that
contains 0 and 1. The unit group of A is the subset A× of invertible elements of A.

Note that the multiplication of A restricts to A× and turns it into an abelian group. Note
further that the constants 0 and 1 of a monoid with zero A are uniquely determined by the
properties 0 ·a = 0 and 1 ·a = a. Sometimes, we take the liberty to omit an explicit description
of these constants and we call a monoid with zero simply a monoid if it clearly contains a
zero. Note, however, that the property f (0) = 0 of a morphism of monoids with zero is not
automatically implied by the other axioms; in other words, not every monoid morphism between
monoids with zeros is a morphism of monoids with zeros.

Example 3.1.2. Every semiring R is a monoid with zero if we omit the addition from the
structure. We write R• for the multiplicative monoid of R.

Given a (multiplicatively written) abelian semigroup A with unit 1, we obtain a monoid with
zero A0 = A∪{0} by adding an element 0 satisfying 0 ·a = 0 for all a ∈ A0.

The trivial monoid with zero {0 = 1} is a terminal object in Mon. The so-called field with
one element F1 = {0,1} is initial in Mon.

Exercise 3.1.3. Show that Mon is complete and cocomplete. The proof can be done in analogy to
the case of semirings, cf. Exercise 2.1.6. In particular, the product of monoids Ai is represented by
the Cartesian product ∏Ai and their coproduct is a union over finite tensor products over F1; the
equalizer of two morphisms f ,g : A→ B is represented by eq( f ,g) = {a ∈ A| f (a) = g(a)} and

27
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their coequalizer is the quotient of B by the congruence generated by the relations f (a)∼ g(a)
for a ∈ A.

Definition 3.1.4. A monoid with zero A is without zero divisors if for any a,b ∈ R, the equality
ab = 0 implies that a = 0 or b = 0. It is integral (or multiplicatively cancellative) if 0 6= 1 and
for any a,b,c ∈ R the equality ac = bc implies c = 0 or a = b.

Lemma 3.1.5. An integral monoid with zero is without zero divisors.

Proof. If R is integral and ab = 0, then ab = 0 = 0 ·b implies b = 0 or a = 0.

Note that as in the case of semirings, a nontrivial monoid with zero and without zero divisor
is in general not integral. An example of such a monoid is a semiring with the corresponding
properties, e.g. the multiplicative monoid T[T ]• of the tropical polynomial algebra T[T ].

3.2 Tensor products and free monoids with zero

Definition 3.2.1. Let fA : C→ A and fB : C→ B be two morphisms of monoids with zero. The
tensor product of A and B over C is the set

A⊗C B = A×B/ ∼

where the equivalence relation ∼ is generated by relations of the form ( fA(c)a,b)∼ (a, fB(c)b)
where a ∈ A, b ∈ B and c ∈ C. We denote the equivalence class of (a,b) by a⊗ b. The
multiplication of A⊗C B is defined by the formula

(a⊗b) · (a′⊗b′) = aa′⊗bb′.

Its zero is 0⊗0 and its one is 1⊗1. The tensor product A⊗C B comes with the canonical maps
ιA : A→ A⊗C B, sending a to a⊗1, and ιB : B→ A⊗C B, sending b to 1⊗b.

Exercise 3.2.2. Verify that A⊗C B is indeed a monoid with zero and that the canonical maps ιA
and ιB are morphisms.

Formulate and prove the usual properties of the tensor product: (1) The tensor product is the

colimit (or pushout) of the diagram A
fA←−C

fB−→ B; (2) every C-bilinear morphism from A×B
defines a unique morphism from A⊗C B; (3) the functor −⊗C B is left adjoint to the functor
HomC(B,−).

Exercise 3.2.3. Let B be monoids with zero and A be a (multiplicatively written) abelian
semigroup with neutral element 1. Let A0 = A∪{0} be the associated monoid with zero; cf.
Example 3.1.2. Let F1→ A0 and F1→ B the unique morphisms from the initial object F1 into
A0 and B, respectively.

Show that the underlying set of B⊗F1 A0 is the smash product B∧A0, which is the quotient
of B×A0 by the equivalence relation generated by (0,a)∼ (b,0) for all a ∈ A0 and b ∈ B.

Let B[A] = B⊗F1 A0, let ιB : B→ B[A] be the canonical map and let ῑA : A→ B[A] be the
composition of the inclusion A→ A0 followed by the canonical map A0 → B[A]. Conclude
from Exercise 3.2.2 that B[A] = B⊗F1 A0 satisfies the following universal property: for every
morphism fB : B→ C of monoids with zeros and every multiplicative map fA : A→ C with
fA(1) = 1, there is a unique morphism F : B[A]→C of monoids with zero such that fB = F ◦ ιB
and fA = F ◦ ῑA. Conclude that B[A] is the analogue of a semigroup algebra for monoids with
zeros; cf. section 2.3.
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Definition 3.2.4. Given a monoid with zero A and a set {Ti}i∈I , the free monoid with zero
over A in {Ti} is the monoid with zero A[Ti]i∈I = A⊗F1 S0 where S = {∏T ei

i }(ei)∈
⊕

N is the
multiplicative semigroup of all monomials ∏T ei

i in the Ti.
If I = {1, . . . ,n}, then we write A[T1, . . . ,Tn] for A[Ti]i∈I . We write a∏T ei

i for a⊗∏T ei
i and

a for the element a∏T 0
i , which we call it a constant monomial of A[Ti]i∈I . We write aT

ei1
i1 · · ·T

ein
in

for a∏T fi
i with fik = eik for k = 1, . . . ,n and f j = 0 otherwise.

Exercise 3.2.5. Let f : R1→ R2 be a morphism of semirings. Show that f is also a morphism
of the underlying monoids, which we denote by f • : R•1→ R•2. Show that this defines a functor
(−)• : SRings→Mon.

This functor has left adjoint, which can be described as follows. Given a monoid A with
zero 0A, we define A+ as the semiring N[A]/c(0A), i.e. the semigroup algebra of A over N
whose zero we identify with 0A. Show that a morphism f : A1 → A2 of monoids with zero
defines a semiring morphism f+ : A+

1 → A+
2 by linear extension. Show that this defines a functor

(−)+ : Mon→ SRings, which is left adjoint to (−)• : SRings→Mon, i.e. are bijections

HomMon(A,R•)
∼−→ HomSRings(A+,R)

for all monoids with zeros A and every semirings R, which are functorial in A and R.

Exercise 3.2.6. Show that the multiplicative monoid N• of N is isomorphic to F1[Tp]p∈P where
P is the set of prime numbers in N.

3.3 Congruences of monoids

Definition 3.3.1. Let A be a monoid with zero. A congruence on A is an equivalence relation c
on A that is multiplicative, i.e. (a,b) and (c,d) in c imply (ac,bd) ∈ c for all a,b,c,d ∈ A.

Example 3.3.2. Let R be a semiring and c a congruence on R. Then c is also a congruence on
the monoid R•.

Exercise 3.3.3. Let k,n ∈ N. Show that the sets

cn =
{
(a,b) ∈ F1[T ]×F1[T ]

∣∣a = b or a,b ∈ {T k|k > n}∪{0}
}

and

ck,n =
{
(T m+rk,T m+sk) ∈ F1[T ]×F1[T ]

∣∣m,r,s ∈ N, and m> n or r = s = 0
}
∪
{
(0,0)

}

are congruences on the free monoid with zero F1[T ] in T over F1 for all k,n > 0. Show that
every congruence of F1[T ] is of this form.

Let c be a congruence on A. Similar to the case of congruences for semirings, we write
a ∼c b, or simply a ∼ b, to express that (a,b) is an element of c. The following proposition
shows that congruences define quotients of monoids with zeros.

Proposition 3.3.4. Let A be a monoid with zero and c be a congruence on A. Then the association
[a] · [b] = [ab] is well-defined on equivalence classes of c and turn the quotient A/c into a monoid
with zero [0] and neutral element [1].

The quotient map π : A→ A/c is a morphism of monoids with zero that satisfies the following
universal property: every morphism f : A→ B such that f (a) = f (b) whenever a∼c b factors
uniquely through π.
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Proof. Given a ∼ a′ and b ∼ b′, we have ab ∼ a′b′. Thus the multiplication of A/c does not
depend on the choice of representative and is therefore well-defined. It follows immediately that
A is a monoid with zero [0] and neutral element [1] and that π a morphism of monoids with zero.

Let f : A→ B be a morphism such that f (a) = f (b) whenever a∼ b in c. For f to factor into
f ◦π for a morphism f : A/c→ B, it is necessary that f ([a]) = f ◦π(a) = f (a). This shows that
f is unique if it exists. Since a∼ b implies f (a) = f (b), we conclude that f is well-defined as a
map. The verification of the axioms of a morphism are left as an exercise.

Example 3.3.5. Let A be a monoid with zero and without zero divisors. Then c = {(a,b) ∈
A×A|a 6= 0 6= b}∪{(0,0)} is a congruence. The quotient A/c is isomorphic to F1.

Exercise 3.3.6. Describe the quotients F1[T ]/ck,n for k,n ∈ N where ck,n are the congruences
from Exercise 3.3.3.

Definition 3.3.7. Let f : A→ B be a morphism of monoids with zero. The congruence kernel of
f is the relation c( f ) = {(a,b) ∈ A×A| f (a) = f (b)} on A.

Lemma 3.3.8. The congruence kernel c( f ) of a morphism f : A→ B of monoids with zeros is a
congruence on A.

Proof. That c= c( f ) is an equivalence relation follows from the following calculations: f (a) =
f (a) (reflexive); f (a) = f (b) implies f (b) = f (a) (symmetry); f (a) = f (b) and f (b) = f (c)
imply f (a) = f (c) (transitive). Multiplicativity follows from: f (a) = f (b) and f (c) = f (d)
imply f (ac) = f (a) · f (c) = f (b) · f (d) = f (bd). This shows that c is a congruence.

As a consequence of this lemma, we see that for a monoid with zero A, the associations
{

congruences on A
}
←→

{
quotients of A

}

c 7−→ A→ A/c
c(π) 7−→ π : A� B

are mutually inverse bijections. We will see in section 3.4 that we have a similar discrepancy
between quotients and ideals as in the case of semirings. In so far, one has to work with
congruences when one wants to describe quotients of monoids with zeros.

Lemma 3.3.9. Let A be a monoid with zero and S ⊂ A×A a subset. Then there is a smallest
congruence c = 〈S〉 containing S. The quotient map π : A→ A/〈S〉 satisfies the following
universal property: every morphisms f : A→ B with the property that f (a) = f (b) whenever
(a,b) ∈ S factors uniquely through π.

Proof. It is readily verified that the intersection of congruences is again a congruence. As
a consequence, the intersection of all congruences containing S is the smallest congruence
containing S.

Given any morphism f : A→ B with the property that f (a) = f (b) whenever (a,b) ∈ S, then
the congruence kernel c( f ) must contain S and thus c = 〈S〉. Using Proposition 2.4.4, we see
that f factors uniquely through π.

This lemma shows that we can construct new monoids with zeros from known ones by
prescribing a number of relations: let A be a monoid with zero and {ai ∼ bi} a set of relations
on A, i.e. S = {(ai,bi)} is a subset of A×A. Then we define A/〈ai ∼ bi〉 as the quotient monoid
A/〈S〉.
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Example 3.3.10. In A = F1[T ]/〈T 2 ∼ T 〉, we have [T 2+i] = [T 1+i] for all i> 0, thus A consists
of the residue classes [0], [1] and [T ], and [T ]2 = [T ] is an idempotent element of A.

Exercise 3.3.11. Let A be a monoid with zero and c a congruence on A. Let c+ be the congruence
on the semiring A+ that is generated by c⊂ A×A⊂ A+×A+. Show that A+/c+ is isomorphic
to (A/c)+.

3.4 Ideals

Definition 3.4.1. Let A be a monoid with zero. An ideal of A is a subset I of A such that 0 and
ab are elements of I for all a ∈ I and b ∈ A. Let f : A→ B be a morphism of monoids with zero.
The (ideal) kernel of f is the inverse image ker( f ) = f−1(0) of 0.

Let S be a subset of A. The ideal generated by S is the set 〈S〉= {as ∈ A|a ∈ A,s ∈ S∪{0}}.
The congruence generated by S is the congruence c(S) generated by {(a,0)|a ∈ S}.

Note that 〈S〉 is the smallest ideal of A containing S. In particular, we have 〈 /0〉= {0}. Note
further that the congruence generated by S is the set

c(S) =
{
(a,b)

∣∣a,b ∈ 〈S〉
}
∪
{
(a,a)

∣∣a ∈ A
}
.

Exercise 3.4.2. Describe all ideals of F1[T ] and of N•. Determine which congruences on F1[T ]
are geneerated by ideals, cf. Exercise 3.3.3.

Proposition 3.4.3. The kernel ker( f ) of a morphism of f : A→ B is an ideal and every ideal
appears as a kernel. More precisely, if I is an ideal of A and c= c(I) is the congruence generated
by I, then I is the kernel of π : A→ A/c and π(a) = π(b) if and only if a,b ∈ I or a = b.

Proof. We begin with the verification that ker( f ) is an ideal. Clearly 0 ∈ ker( f ). Let a ∈ ker( f )
and b ∈ R. Then f (ab) = f (a) f (b) = 0 · f (b) = 0 and ab ∈ ker( f ). Thus ker( f ) is an ideal.

It is easily verified that c= c(I) has the explicit description

c =
{
(a,b) ∈ A×A |a,b ∈ I or a = b

}
.

It follows that π(a) = π(b) if and only if a,b∈ I or a = b, and that ker f = {a∈ A|π(a) = 0}= I,
as claimed.

Remark 3.4.4. As a consequence of Proposition 3.4.3, we see that the quotient A/c(I) of A by
an ideal I contracts all elements of the ideal I, but does not identify any other elements. In other
words, A/c(I) stays in bijection with {0}∪ (A− I).

We summarize: with a congruence c on A, we can associate the kernel of the projection
πc : A→ A/c, which is an ideal; with an ideal I, we can associate the congruence c(I) generated
by I. We have that the kernel of A→ A/c(I) is I and the congruence c(kerπc) is contained in c,
but in general not equal to c. This leads to the following picture.

“kernels” “quotients”
{

ideals of A
} {

congruences on A
}

Exercise 3.4.5. Compare the ideals of F1[T ] with the congruences on F1[T ]; cf. Exercises 3.3.3
and 3.4.2. Do the same exercise for F1[T1,T2].
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3.5 Prime ideals

Definition 3.5.1. Let A be a monoid with zero. An ideal I of A is proper if it is not equal to A. It
is maximal if it is proper and if I ⊂ J implies I = J for any other proper ideal of A. It is prime if
its complement S = A− I is a multiplicative subset of R.

Let A be a monoid with zero. Then m = A−A× is an ideal of A, which is necessarily the
unique maximal ideal of A. This shows that every monoid with zero A is local, i.e. A contains a
unique maximal ideal m and it satisfies A = A×∪m.

Exercise 3.5.2. Show that for every subset J ⊂ {1, . . . ,n}, the ideals

〈Ti|i ∈ J〉 = {0} ∪
{ n

∏
i=1

T ei
i ∈ F1[T1, . . . ,Tn]

∣∣ei > 0 for some i ∈ J
}

of F1[T1, . . . ,Tn] are prime ideals and that every prime ideal of F1[T1, . . . ,Tn] is of this form.

Lemma 3.5.3. Let A be a monoid with zero and I an ideal of A. Then I is prime if and only if
A/I is nontrivial and without zero divisors, and I is maximal if and only if A/I = (A/I)×∪{[0]}.

Proof. The ideal I is prime if and only if for all a,b ∈ A, ab ∈ I implies that a ∈ I or b ∈ I.
Passing to the quotient A/I, this means that [ab] = [0] implies [a] = [0] or [b] = [0] where we use
that the kernel of A→ A/I is I, cf. Proposition 3.4.3. This latter condition is equivalent to A/I
being nontrivial and without zero divisors.

As observed above, I is maximal if and only if I = A−A×. In this case, A/I is isomorphic
to (A×)0 = A×∪{0} and thus satisfies A/I = (A/I)×∪{[0]}. Conversely, if [a] · [b] = 1 in A/I,
then ab = 1 in A since [a] 6= [0] 6= [b] and thus [a] = {a} and [b] = {b} by Proposition 3.4.3.
Thus if A/I = (A/I)×∪{[0]}, then I = ker(A→ A/I) = A−A×.

Lemma 3.5.4. Every maximal ideal is a prime ideal.

Proof. This follows immediately from the characterization of the unique maximal ideal as the
complement of the unit group and the fact that the product of non-units is a non-unit.

Lemma 3.5.5. Let f : A→ B be a morphism of monoids with zero and I an ideal of B. Then
f−1(I) is an ideal of A. If I is prime, then f−1(I) is prime.

Proof. We verify that f−1(I) is an ideal. Obviously, it contains 0. If a ∈ f−1(I) and b ∈ A, then
f (ab) = f (a) f (b) ∈ I and ab ∈ f−1(I). This shows that f−1(I) is an ideal.

Assume that I is prime, i.e. S = B− I is a multiplicative set. Then f−1(S) = A− f−1(I) is a
multiplicative set of A and thus f−1(I) is a prime ideal of A.

Remark 3.5.6. Similar to the case of semirings, there exist two concepts of prime congruences
for monoids with zero. Namely, a congruence c on a monoid with zero A is a weak prime
congruence on A if A/c is nontrivial and without zero divisors, and c is a strong prime congruence
on A if A/c is integral.
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3.6 Localizations

Definition 3.6.1. Let A be a monoid with zero and S⊂ A be a multiplicative subset of A, i.e. a
subset that contains 1 and is closed under multiplication. The localization of A at S is the quotient
S−1A of S×A by the equivalence relation that identifies (s,a) with (s′,a′) whenever there is a
t ∈ S such that tsa′ = ts′a in A. We write a

s for the equivalence class of (s,a). The multiplication
of S−1A is defined by the formula a

s · a′
s′ = aa′

ss′ . The zero of S−1A is 0
1 and its one is 1

1 .
We write A[h−1] for S−1A if S = {hi}i∈N for an element h∈ A and call A[h−1] the localization

of A at h. We write Ap for S−1A if S = A−p for a prime ideal p of A and call Ap the localization
of A at p.

If I is an ideal of A, then we write S−1I for the ideal of S−1A that is generated by {a
1 |a ∈ I}.

Lemma 3.6.2. Let A be a monoid with zero, I an ideal of A and S a multiplicative subset of A.
Then

S−1I =
{ a

s ∈ S−1A
∣∣a ∈ I,s ∈ S

}
.

Proof. It is clear that S−1I contains the set {a
1 |a ∈ I} of generators of S−1I. If we have proven

that the set IS = {a
s |a ∈ I,s ∈ S} is an ideal, then it follows that it contains S−1I. The reverse

inclusion follows from the observation that for a
s ∈ IS, we have a

s =
1
s · a

1 ∈ S−1I.
We are left with showing that IS is an ideal. It obviously contains 0

1 . Given a
s ∈ IS and

b
t ∈ S−1A, then a

s · b
t =

ab
st ∈ IS since ab ∈ I. This verifies that IS is an ideal of S−1I and finishes

the proof of the lemma.

Exercise 3.6.3. Let A be a monoid with zero and S a multiplicative subset of A. Show that the
map ιS : A→ S−1A, defined by ιS(a) = a

1 , is a morphism of monoids with zero that maps S
to the units of S−1A. Show that it satisfies the usual universal property of localizations: every
morphism f : A→ B of monoids with zero that maps S to the units of B factors uniquely through
ιS. Show that ιS is an epimorphism.

Proposition 3.6.4. Let A be a monoid, S a multiplicative subset of A and ιS : A→ S−1A the
localization morphism. Then the maps

{
prime ideals p of A with p∩S = /0

}
←→

{
prime ideals of S−1A

}

p
Φ7−→ S−1p

ι−1
S (q)

Ψ 7−→ q

are mutually inverse bijections.

Proof. To begin with, we verify that both Φ and Ψ are well-defined. Let p be a prime ideal of A
such that p∩S = /0. Then S−1p= {a

s |a ∈ p,s ∈ S} by Lemma 3.6.2. Consider a
s ,

b
t ∈ S−1A such

that a
s · b

t = ab
st ∈ S−1p, i.e. ab ∈ p. Then a ∈ p or b ∈ p and thus a

s ∈ S−1p or b
t ∈ S−1p. This

shows that S−1p is a prime ideal of S−1A and that Φ is well-defined.
Let q be a prime ideal of S−1A. By Lemma 3.5.5, ι−1

S (q) is a prime ideal of A. Note that q is
proper and does not contain any element of the form s

t with s, t ∈ S since t
s · s

t = 1. Thus ι−1
S (q)

intersects S trivially. This shows that Ψ is well-defined.
We continue with the proof that Ψ◦Φ is the identity, i.e. ι−1

S (S−1p) = p for every prime ideal
p of A that does not intersect S. The inclusion p⊂ ι−1

S (S−1p) is trivial. The reverse inclusion can
be shown as follows. The set ι−1

S (S−1p) consists of all elements a ∈ A such that a
1 = b

s for some
b ∈ p and s ∈ S. This equation says that there is a t ∈ S such that tsa = tb. Since b ∈ p, we have
tsa = tb ∈ p. Since ts /∈ p, we have a ∈ p, as desired.
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We continue with the proof that Φ◦Ψ is the identity, i.e. S−1ι−1
S (q) = q for every prime ideal

q of S−1A. The inclusion S−1ι−1
S (q)⊂ q is trivial. The reverse inclusion can be shown as follows.

Let a
s ∈ q. Then a

1 = s
1 · a

s ∈ q and a ∈ ι−1
S q. Thus a

s ∈ S−1ι−1
S (q), as desired. This concludes the

proof of the proposition.

Let A be a monoid with zero, p a prime ideal of A and S=A−p. Then S−1p is the complement
of the units of S−1A and therefore the unique maximal ideal of S−1A.

Definition 3.6.5. Let A be a monoid with zero and p a prime ideal of A. The residue field at p is
the monoid with zero k(p) = Ap/c(S−1p) where S is the complement of p in A and c(S−1p) is
the congruence on Ap that is generated by S−1p.

Let p be a prime ideal of A. Then the residue field at p comes with a canonical morphism
A→ k(p), which is the composition of the localization map A→ Ap with the quotient map
Ap→ k(p).

Corollary 3.6.6. Let A be a monoid with zero, p a prime ideal of A and S = A−p. Then k(p) is
nontrivial and k(p)× = k(p)−{0}.

Proof. Note that p is the maximal prime ideal that does not intersect S. By Proposition 3.6.4,
m= S−1p is the unique maximal of S−1A. Thus the kernel of S−1A→ k(p) is m, which shows that
k(p) is nontrivial. Since (S−1A)× = S−1A−m, we see that (S−1A)×→ k(p)−{0} is surjective,
which shows that all nonzero elements of k(p) are invertible.



Chapter 4

Blueprints

chapter last edited on
April 5, 2018

A blueprint can be described as a hybrid of a monoid with zero and a semiring. Blueprints
continue sharing certain properties with rings in the same way as monoids and semirings do, but
in other aspect the deviation from rings increases. In this section, we will discuss the aspects of
blueprints that will be relevant for this text.

Blueprints were first introduced by the author in [Lor12]. Note that the definition of a
blueprint in these notes is more restrictive than the original definition. Namely, the definition that
we use in this text, as most other sources on blueprints do, correspond to proper blueprints with
zero in [Lor12]. As a complementary reading to this chapter, the reader might want to consider
the overview papers [Lor16] and [Lor18].

4.1 The category of blueprints

Definition 4.1.1. A blueprint is a pair B = (B•,B+) of a semiring B+ and a multiplicative subset
B• of B+ that contains 0 and spans B+ as a semiring. A morphism of blueprints f : B→C is
a semiring morphism f+ : B+→C+ with f (B•) ⊂C•. We denote the restriction of f+ to the
respective multiplicative subsets by f • : B•→C•. We denote the category of blueprints by Blpr.

Let B = (B•,B+) be a blueprint. The ambient semiring of B is B+ and the underlying monoid
of B is B•. We write a ∈ B for a ∈ B• and S⊂ B for S⊂ B•. The unit group of B is B× = (B•)×.
A blue field is a blueprint B with B× = B−{0}.

Note that this definition yields tautologically a functor (−)+ : Blpr→ SRings. Note further
that the underlying monoid B• of a blueprint B is a monoid with zero and given a morphism
of blueprints f : B→C, the map f • : B•→C• is a morphism of monoids with zero. Thus we
obtain a functor (−)• : Blpr→Mon.

Finally note that a morphism f : B→C of blueprints is already determined by f • : B•→C•

since B• spans B+ as a semiring. This allows us to describe a morphism f : B→C of blueprints
in terms of the monoid morphism f • : B•→C•.

Example 4.1.2. Some first examples of blueprints are the following:

• {0,1} ⊂ N, which is an initial object of Blpr;

• {0} ⊂ {0}, which is a terminal object of Blpr;

• {0,±1} ⊂ Z;

• [0,1]⊂ R;

35
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• {aT e1
1 · · ·T en

n }a∈R,e1,...,en∈N ⊂ R[T1, . . . ,Tn] where R is a semiring.

Note that we will denote ({0,1},N) by F1, cf. section 4.2, ({0,±1},Z) by F12 , cf. Example
4.4.4 and the last blueprint of this list by Rblue[T1, . . . ,Tn], cf. section 4.3.

Definition 4.1.3. Let B be a blueprint. A B-algebra is a blueprint C together with a blueprint
morphism ιC : B→C. Often we write only C for a B-algebra without mentioning ιC explicitly.
A morphism between B-algebras C and D or a B-linear morphism is a blueprint morphism
f : C→ D such that ιD = f ◦ ιC. This defines the category AlgB of B-algebras. We denote the
sets of B-linear morphisms from C to D by HomB(C,D).

Let C and D be B-algebras. Then there is a morphism α : C•⊗B• D•→ (C+⊗B+ D+)• of
monoids with zero that sends c⊗d to c⊗d. We define the tensor product of C and D over B as
the blueprint C⊗B D = (imα•,C+⊗B+ D+).

Exercise 4.1.4 (Tensor products). Show that C⊗B D is indeed a blueprint. Describe the canonical
inclusions C→C⊗B D and D→C⊗B D. Formulate and prove the usual properties of the tensor
product: (1) The tensor product is the colimit (or pushout) of the diagram C

ιC←−C ιD−→ D; (2)
every B-bilinear morphism from C×D defines a unique morphism from C⊗B D; (3) the functor
−⊗B D is left adjoint to the functor HomB(D,−).

Let f : B→C be a blueprint morphism. Then the precomposition with f defines a functor
AlgC→ AlgB, which is called the restriction of scalars. Show that −⊗B C defines a left adjoint
AlgB→ AlgC to the restriction of scalars.

Exercise 4.1.5 (Limits and colimits). Show that the category of blueprints is complete and
cocomplete. More precisely, show the following assertions.

Let {Bi} be a family of blueprints. Then there is a canonical morphism α+ : (∏B•i )
+→∏B+

i
of semirings. Define ∏Bi = (∏B•i , imα+) and describe the canonical projections π j : ∏Bi→ B j.
Show that ∏Bi is a product of the Bi.

Similarly, there is a canonical morphism α• :
⊗

B•i → (
⊗

B+
i )
• of monoids with zero. Define⊗

Bi = (imα•,
⊗

B+
i ) and describe the canonical inclusions ι j : B j→

⊗
Bi. Show that

⊗
Bi is

a coproduct of the Bi.
Let f ,g : B→ C be two blueprint morphisms. Then there is a canonical morphism α+ :

eq( f •,g•)+→ eq( f+,g+) of semirings. Define eq( f ,g) = (eq( f •,g•), imα+), which comes
with a canonical inclusion eq( f ,g)→ B. Show that eq( f ,g) is an equalizer of f and g.

Similarly there is a canonical morphism α• : coeq( f •,g•)→ coeq( f+,g+)• of monoids
with zero. Define coeq( f ,g) = (imα•,coeq( f+,g+)), which comes with a canonical projection
C→ coeq( f ,g). Show that coeq( f ,g) is a coequalizer of f and g.

Exercise 4.1.6 (Monomorphisms, isomorphisms and epimorphisms). Let f : B → C be a
blueprint morphism. Show that f is a monomorphism if and only if f • is injective; f is
an isomorphism if and only if both f • and f+ are bijective; f is an epimorphisms if f+ is
surjective. Give an example of an epimorphism f for which f+ is not surjective.

Exercise 4.1.7 (Axiomatic blueprints). There is a different but equivalent way to define blueprints.
This alternative viewpoint has been used in previous texts about blueprints, as in [Lor12] and
[Lor16]. In this exercise, we explain the connection to this alternative definition.

We define an axiomatic blueprint as a pair B = (A,R) of a monoid with zero A together with
a preaddition R, which is an equivalence relation on N[A] that satisfies for all x,y,z, t ∈ N[A] and
a,b ∈ A that
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(1) x≡ y and z≡ t implies x+ z≡ y+ t and xz≡ yt,

(2) a≡ b implies a = b as elements of A, and

(3) 0A ≡ 0N[A], i.e. the zero of A is equivalent to zero of N[A],

where we write x ≡ y for (x,y) ∈ R. We also write B• for A and say that x ≡ y holds in B if
(x,y) ∈ R. A morphism between axiomatic blueprints B1 and B2 is a morphism f : B•1→ B•2 of
monoids with zero such that for all ai,b j ∈ B•1 with ∑ai ≡∑b j in B1, we have ∑ f (ai)≡∑ f (b j)
in B2.

Let B = (A,R) be an axiomatic blueprint. Show that R is a congruence on N[A] and denote
the semiring N[A]/R by B+. Show that the natural map A→ N[A]→ B+ is injective and defines
a blueprint (B•,B+). Conversely, we can associate with a blueprint (B•,B+) the axiomatic
blueprint (B•,R) where R is the congruence kernel of the quotient map N[B•]→ B+.

Show that every morphism f : B1→ B2 of axiomatic blueprints induces a semiring morphism
f+ : B+

1 → B+
2 , which satisfies f+(B•1)⊂ B•2. Show that this defines an equivalence between the

category of axiomatic blueprints with Blpr.

Basic facts about reflective subcategories

In the following sections, we will encounter several reflective and coreflective subcategories of
Blpr. The following exercises contain the definition of a (co)reflective category and discuss its
main properties. Though reflective subcategories is a standard topic in category theory, most
expositions are either incomplete or use more advanced results from category theory than is
necessary for our purposes. Accessible references are sections 3.4 and 3.5 in Borceux’s book
[Bor94] and section IV.3 in MacLane’s book [Mac71].

Exercise 4.1.8. Let C be a category. A reflective subcategory of C is a full subcategory D

such that the inclusion functor ι : D→ C has a left adjoint ρ : C→D, i.e. there are bijections
Φ : HomC(C, ι(D))→ HomD(ρ(C),D) for every C in C and D in D that are functorial in C and
D. The functor ρ is called a reflection of C in D.

Show that ρ ◦ ι is isomorphic to the identity functor on D. More precisely, show that the
counit of the adjunction εD = Φ(idι(D)) : ρ◦ ι(D)→ D is an isomorphism for every D in D. In
other words, this shows that if ρ is a reflection of a full embedding ι : D→ C of categories, then
ρ is a left inverse of ι.

Conversely, assume that ι : D→ C is an arbitrary functor of categories that has a left adjoint
and left inverse ρ : C→D. Show that ι is fully faithful and that the image of ι is a reflective
subcategory of C.

Exercise 4.1.9. Let C be a complete and cocomplete category and ι : D → C a reflective
subcategory with reflection ρ. Let ∆ be a diagram in D, i.e. a family of objects and morphisms
in D. Denote by ι(∆) the diagram in C that results from ∆ by applying ι to each object and
morphism in ∆.

Show that ρ
(

lim ι(∆)
)

is a limit lim∆ of ∆ in D and that ι(lim∆) is naturally isomorphic to
lim ι(∆). Show that ρ

(
colim ι(∆)

)
is a colimit colim∆ of ∆ in D. Find an example where the

natural morphism colim ι(∆)→ ι(colim∆) is not an isomorphism.

Exercise 4.1.10. Let C be a category. A coreflective subcategory of C is a full subcategory D

such that the inclusion functor ι : D→ C has a right adjoint ρ : C→D. Formulate and prove the
analogous properties from Exercises 4.1.8 and 4.1.9.
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4.2 Semirings and monoids as blueprints

Let R be a semiring. Then we define the associated blueprint as Rblue = (R,R), thus (Rblue)• =
(Rblue)+ = R. Every morphism f : R→ S of semirings is tautologically a morphism of blueprints,
which we denote by f blue : Rblue→ Sblue. This yields a functor

(−)blue : SRings −→ Blpr .

Lemma 4.2.1. The functor (−)+ : Blpr→ SRings is a left adjoint and left inverse to (−)blue :
SRings→ Blpr. Thus we can identify SRings with a reflective subcategory of Blpr.

Proof. By its very definition, it is clear that (−)+ is a left inverse to (−)blue. Let B be a
blueprint and R a semiring. A blueprint morphism f : B→ Rblue is a semiring morphism
f+ : B+→ (Rblue)+ such that f+(B•)⊂ (Rblue)• = R. Since the latter condition is vacuous, we
obtain a natural bijection Hom(B,Rblue)→Hom(B+,R), which shows that (−)+ is a left adjoint
to (−)blue.

This allows us to consider any semiring as a blueprint. In particular, we consider the natural
numbers N, the Boolean numbers B, the tropical numbers T and their integers OT, as well as Z,
Q, R and C as blueprints in the following.

Remark 4.2.2. We warn the reader at this point that coproducts and free algebras are not
preserved by the inclusion (−)blue : SRings→ Blpr. For instance if R is a semiring and S and
T are two R-algebras, then (S⊗R T )blue is in general not isomorphic to Sblue⊗Rblue T blue. But in
accordance with Exercise 4.1.9, there is a canonical isomorphism

(
Sblue⊗Rblue T blue

)+→ S⊗R T
where the former tensor product is a tensor product of blueprints and the latter tensor product is
a tensor product of semirings.

There is a similar discrepancy between the construction of free algebras; cf. section 4.3 for
more details. To avoid confusion, we shall often add a symbol “+” to make clear that we refer to
the corresponding construction in SRings; for instance, we write S⊗+R T and R[T1, . . . ,Tn]

+.

Exercise 4.2.3. Show that Rings is a reflective subcategory of SRings. More precisely, show
that −⊗NZ is a left adjoint of the inclusion functor ι : Rings→ SRings.

Conclude that the composition (−)blue ◦ ι : Rings→ SRings→ Blpr has a left adjoint and
left adjoint ρ. Give an explicit description of ρ.

Let A be a monoid with zero 0A and A+ = N[A]/c(0A) the associated semiring, cf. Exercise
3.2.5. Then we define the associated blueprint as Ablue = (A,A+). Given a morphism f : A→ B
of monoids with zeros, we obtain a morphism of semirings f+ : A+→ B+ by linear extension,
cf. Exercise 3.2.5. We define f blue : Ablue→ Bblue as f+ : A+→ B+. This yields a functor

(−)blue : Mon −→ Blpr .

Lemma 4.2.4. The functor (−)• : Blpr→Mon is a right adjoint and left inverse of (−)blue :
Mon→ Blpr. Thus we can identify Mon with a coreflective subcategory of Blpr.

Proof. Since we can recover a monoid with zero A from Ablue as (Ablue)• and a morphism
f : A→ B from f blue as f = ( f blue)•, we see that (−)• is a left inverse of (−)blue.

Let A be a monoid with zero and B a blueprint. A blueprint morphism f : Ablue→ B deter-
mines a morphism f • : A = (Ablue)•→ B• of monoids with zero, and f is uniquely determined
by f •. This defines an injection Hom(Ablue,B)→ Hom(A,B•), which is a surjective since every
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morphism g : A→ B• of monoids with zero extends to a semiring morphism g+ : A+→ B+. We
conclude that (−)• is a right adjoint of (−)blue.

This allows us to consider every monoid as a blueprint, and we carry over the notation that
we have used for monoids. In particular, we have F1 = ({0,1},N).

In contrast to the situation of the inclusion SRings→ Blpr, the inclusion Mon→ Blpr
preserves colimits and free algebras, but not limits. For example, the product A×B of two
monoids with zeros A and B in Mon is evidently a monoid with zero. However, the product
Ablue×Bblue in Blpr is the blueprint (A×B,A+×B+), and the semiring morphism (A×B)+→
A+×B+ induced by the identity on A×B is not an isomorphism if A and B are nontrivial. For
instance, the elements (0A,1B)+(1A,0B) and (1A,1B) have the same image.

4.3 Free algebras

Definition 4.3.1. Let B be a blueprint and A a monoid with zero. The monoid algebra of A over
B is the blueprint

B[A] = B⊗F1 Ablue =
(

B•⊗F1 A,B+⊗+N A+
)
.

Let {Ti}i∈I be a set. The free algebra in {Ti}i∈I over B is the blueprint B[Ti]i∈I = B[A] for
A = F1[Ti]i∈I . We write B[T1, . . . ,Tn] if I = {1, . . . ,n}.

Note that the monoid algebra B[A] is a B-algebra with respect to the inclusion B→ B[A] send-
ing a to a⊗1A. Note that if R is a semiring and n> 1, then the monoid algebra Rblue[T1, . . . ,Tn]
is not equal to the blueprint associated with the polynomial semiring R[T1, . . . ,Tn]. But in accor-
dance with Lemma 4.2.1 and Exercise 4.1.9, we have a natural isomorphism

(
Rblue[T1, . . . ,Tn]

)+→
R[T1, . . . ,Tn].

Exercise 4.3.2. Formulate and prove the universal properties for B[A] and B[Ti].

Example 4.3.3. Let R be a semiring. As a blueprint, the free R-algebra in T1, . . . ,Tn is

R[T1, . . . ,Tn] =
(
{aT e1

1 · · ·T en
n }a∈R,e1,...,en∈N, R[T1, . . . ,Tn]

+
)
.

Exercise 4.3.4. Show that F1[T1, . . . ,Tn]
+ = N[T1, . . . ,Tn]

+.

4.4 Quotients and congruences

Definition 4.4.1. Let B be a blueprint. A congruence on B is a congruence on the ambient
semiring B+. Let c be a congruence on B and π : B+→ B+/c the quotient map. The quotient of
B by c is the blueprint B�c= (π(B•),B+/c).

The congruence kernel of a blueprint morphism f : B→C is the congruence kernel c( f+)
of the semiring morphism f+ : B+→C+. A quotient of a blueprint B is a class of surjective
blueprint morphisms f : B→C, i.e. f (B•) =C•, where two surjection f : B→C and f ′ : B→C′

are equivalent if there is an isomorphism g : C→C′ such that f ′ = g◦ f .
Given a blueprint B and a subset S = {(xi,yi)} of B+×B+, we denote by 〈S〉= 〈xi ≡ yi〉 the

congruence on B+ generated by S.
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Note that B�c is indeed a blueprint: by Proposition 2.4.4, B+/c is a semiring; it is obvious
that π(B•) is a multiplicative subset of B+/c that contains 0 and 1 and spans B+/c. Note further
that the quotient map π : B→ B�c is a morphism of blueprints, which satisfies π+(x) = π+(y)
whenever x∼c y. By Lemma 2.4.7, the congruence kernel of a blueprint morphism f : B→C is
a congruence on B.

Proposition 4.4.2. Let S = {(xi,yi)} be a subset of B+×B+ and c = 〈S〉 the congruence gen-
erated by S. Let π : B→ B�c be the quotient map. Given a morphism f : B→ C such that
f (xi) = f (yi) for all i, there is a unique morphism f̄ : B�c→C such that f = f̄ ◦π.

Proof. By Lemma 2.4.8, there is a unique semiring morphism g : (B�c)+ = B+/c→C such
that f+ = g◦π+. Since g

(
(B�c)•

)
= f (B•) and f (B•)⊂C•, the semiring morphism g defines

a blueprint morphism f̄ : B�c→C with f̄+ = g that satisfies f = f̄ ◦π.

Proposition 4.4.3. The associations

{
congruences on B

} 1:1←→
{

quotients of B
}

c
Φ7−→ B→ B�c

c(π)
Ψ 7−→ π : B�C

are mutually inverse bijections.

Proof. It is clear that c is the congruence kernel of B→ B�c. If π : B→ C is a surjective
morphism of blueprints, then π+ : B+ → C+ is surjective and C• = π+(B•). Thus C = B�c
where c is the congruence kernel of π.

The free algebra construction and the characterization of quotients of blueprints by congru-
ences allows for a convenient notation for blueprints: given any blueprint B, e.g. a monoid or a
semiring, and any subset {( fi,gi)} of B[T1, . . . ,Tn]

+×B[T1, . . . ,Tn]
+, we can define the blueprint

B[T1, . . . ,Tn]�〈 fi ≡ g j〉.

Example 4.4.4 (Cyclotomic extensions of F1). Let µn be a cyclic group of order n with generator
ζn. The n-th cyclotomic extension of F1 is the blueprint

F1n = F1[µn]�〈∑n/d
i=1 ζ

di
n |d < n is a divisor of n〉.

For n> 2, we can identify ζn with a primitive n-th root of unity in the cyclotomic number field
Q[ζn], which yields an isomorphism of the ambient semiring F+

1n with the ring of integers of
Q[ζn]. For n = 1, we have F11 = F1 and for n = 2, we have that −1 = ζ2 is an additive inverse
of 1 and F12 = {0,±1}�〈1+(−1)≡ 0〉.

Example 4.4.5. Let k be a ring and R be a k-algebra, i.e. a ring homomorphism k→ R. A
representation R' k[T1, . . . ,Tn]

+/I defines the associated blueprint

k[T1, . . . ,Tn]�〈∑x≡ ∑y|x− y ∈ I〉 =
({

[aT e1
1 · · ·T en

n ]
}
,R
)

where [aT e1
1 · · ·T en

n ] is the class of aT e1
1 · · ·T en

n ∈ k[T1, . . . ,Tn] in R = k[T1, . . . ,Tn]/I.

Exercise 4.4.6. Let B = F1[T1, . . . ,T4]�〈T1T4 ≡ T2T3+1〉. Describe a bijection of the morphism
set Hom(B,N) with the set of 2×2-matrices with coefficients in N and determinant 1.
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Exercise 4.4.7. Show that F1[T2,T−2]�〈T2 ≡ 1+1,T2+T−2 ≡ 0〉 is isomorphic to (2Z∪{1},Z).
Find a representation of (Z,Z) as A�c where A is a monoid with zero and c a congruence on A+.

Exercise 4.4.8. Let B be a blueprint, c a congruence on B and π : B→ B�c the quotient map.
Show that the restriction c• of c to B• is a congruence on the monoid with zero B• and that
(B�c)• ' B•/c•. Conversely, show that every congruence c• on the underlying monoid B•

determines a congruence c on B that is minimal among all congruences on B whose restriction to
B• is c•.

Conclude that a congruence c on a blueprint B is the same as a pair (c•,c+) of a congruence
c• on the underlying monoid B• and a congruence c+ on the ambient semiring B+ such that the
inclusion B•→ B+ induces an injection B•/c• ↪→ B+/c+. In so far, we obtain the following
picture:

{
congruences on B•

} {
congruences on B

} {
congruences on B+

}1:1

4.5 Reflective subcategories

The following properties characterize important subclasses of blueprints.

Definition 4.5.1. A blueprint B is

• without zero divisors if B• is without zero divisors;

• integral (or multiplicatively cancellative) if B• is integral;

• with (additive) inverses or with −1 if B• contains an element −1 that is an additive inverse
of 1 in B+;

• (additively) cancellative if B+ is cancellative;

• (additively) idempotent if B+ is idempotent;

Lemma 4.5.2. Let B be a blueprint.

(1) If 0 = 1 in B, then B is trivial, i.e. B• = B+ = {0}.
(2) If B is integral, then B is without zero divisors.

(3) B is cancellative if and only if B+ embeds into a ring.

(4) If B is with −1, then B+ is a ring. In particular, B is cancellative. Moreover, (−1)2 = 1
and −a = (−1) ·a is an additive inverse of a for every a ∈ B.

(5) B is with −1 if and only if there is a morphism F12 → B. The morphism F12 → B is unique.

(6) B is idempotent if and only if there is a morphism B→ B. The morphism B→ B is unique.

(7) If B is idempotent and cancellative, then it is trivial.

Proof. Parts (1), (3) and (7) follow from the corresponding statements for rings, cf. Lemma
2.2.3 and Exercise 2.2.5. Part (2) follows from the corresponding fact for monoids with zeros, cf.
Lemma 3.1.5.

We continue with (4). The semiring B+ is a ring since every element a ∈ B has an additive
inverse, namely (−1) ·a. Clearly, a ring a cancellative. Multiplication of 1+(−1) = 0 by any
element a of B yields a+(−a) = 0, which shows that−a is an additive inverse of a. In particular,
we get (−1)+(−1)2 = 0 for a =−1. Thus (−1)2 = (−1)2 +(−1)+1 = 1.
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We continue with (5). If B is with −1, then B+ is a ring by (4). Thus there exists a unique
morphism f : Z→ B+. Since −1 ∈ B•, we have f ({0,±1} ⊂ B•, which shows that f is a
blueprint morphism F12 → B. Conversely, assume that there exists a morphism f : F12 → B.
Then the semiring morphism f+ : Z→ B+ maps −1 to the additive inverse −1 of 1 in B+, and
−1 = f •(−1) ∈ B•. This shows the first statement of (5). The second claim follows since the
image of 1 determines the semiring morphism F+

12 = Z→ B+ uniquely.
We continue with (6). Assume that B is idempotent, i.e. 1+1 = 1 in B+. Then the unique

morphism F1→ B factors through B= F1�〈1+1≡ 1〉 by the universal property of the quotient,
cf. Proposition 4.4.2. Conversely, assume that there is a morphism f : B→ B. Then 1+ 1 =
f+(1)+ f+(1) = f+(1+1) = f+(1) = 1, which shows that B is idempotent. Since the images
of 0 and 1 are fixed, it is clear that B→ B is unique. This completes the proof of the lemma.

Example 4.5.3. The cyclotomic extension F1n of F1 is with −1 if and only if n is even; cf.
Example 4.4.4 for the definition of F1n . Its ambient semiring F+

1n is a ring for all n > 2. This
shows that it is not true in general that a blueprint B is with −1 if B+ is a ring. Another
counterexample is the blueprint B = (2Z∪{1},Z) from Exercise 4.4.7.

Let Blprinv ⊂ Blpr be the full subcategory of blueprints with inverses.

Lemma 4.5.4. The category Blprinv of blueprints with inverses is a reflective subcategory of
Blpr with reflection (−)inv =−⊗F1 F12 .

Proof. Let B be a blueprint and C a blueprint with inverses. Note that Binv = B⊗F1 F12 is indeed
a blueprint with inverses since there exists a morphism F12 → B⊗F1 F12 , which sends a to 1⊗a,
cf. Lemma 4.5.2, part (5). Thus (−)inv is well-defined.

The morphism ι : B→ B⊗F1 F12 that sends a to a⊗1 induces a map Φ : Hom(Binv,C)→
Hom(B,C), which is functorial in B and C. By Lemma 4.5.2, part (5), there is a unique
morphism F12 →C. Since F1 is initial, there are unique morphisms F1→ F12 and F1→ B, and
the compositions F1→ B→C and F1→ F12 →C are equal. By the universal property of the
tensor product, g factors uniquely into ι◦ f for some morphism f : B⊗F1 F12 →C. This shows
that Φ is a bijection and that −⊗F1 F12 is a left adjoint to the embedding Blprinv→ Blpr.

Let Blprcanc ⊂ Blpr be the full subcategory of cancellative blueprints.

Lemma 4.5.5. The category Blprcanc of cancellative blueprints is a reflective subcategory of
Blpr whose reflection (−)canc : Blpr→ Blprcanc sends a blueprint B to Bcanc = B�ccanc where

ccanc =
〈

x≡ y
∣∣x+ z = y+ z for some z ∈ B+

〉
.

Proof. To begin with, we show that ccanc is equal to c= {x≡ y|x+ z = y+ z for some z ∈ B+},
i.e. that c is a congruence. It is clear that c is reflective and symmetric. For transitivity, consider
x ∼c y and y ∼c z, i.e. x+ r = y+ r and y+ s = z+ s for some r,s ∈ B+. Then x+ r + s =
y+ r+ s = z+ r+ s and x ∼c z. For additivity and multiplicativity, consider x ∼c y and z ∼c t,
i.e. x+ r = y+ r and z+ s = t + s for some r,s ∈ B+. Then x+ z+ r+ s = y+ t + r+ s implies
x+ z∼c y+ t and

xz+ xs+ rz+ rs = (x+ r)(z+ s) = (y+ r)(t + s) = yt + ys+ rt + rs

implies xz ∼c yt. Thus c is a congruence on B and ccanc = c. Moreover, we conclude that
π : B→ Bcanc is an isomorphism if B is cancellative.
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We continue with showing that Bcanc is a cancellative blueprint. Let π : B→ Bcanc be the
quotient map. Consider an equality π(x)+π(r) = π(y)+π(r) in (Bcanc)+. Since ccanc = c, we
have x+ r+ s = y+ r+ s for some s ∈ B+. Thus x∼c y and π(x) = π(y). This shows that Bcanc

is cancellative and thus an object of Blprcanc.
Let f : B → C be a morphism into a cancellative blueprint C and consider x ∼c y, i.e.

x+ z = y+ z for some z ∈ B+. Then f+(x)+ f+(z) = f+(y)+ f+(z) and f+(x) = f+(y) since
C is cancellative. This shows that c is contained in the congruence kernel of f . By the universal
property of the quotient map π : B→ Bcanc, there is a unique morphism f canc : Bcanc→C such
that f = f canc ◦π, cf. Proposition 4.4.2. Given an arbitrary morphism f : B→C of blueprints,
we define f canc = gcanc where g is the composition B→ C→ Ccanc. This defines the functor
(−)canc : Blpr→ Blprcanc.

Let C be a cancellative blueprint. Then the map Hom(Bcanc,C)→ Hom(B,C) sending
f : Bcanc→C to f ◦π : B→C is a bijection by what we have shown in the last paragraph. This
shows that (−)canc is a left adjoint to the embedding Blprcanc→ Blpr.

Let Blpridem ⊂ Blpr be the full subcategory of idempotent blueprints.

Lemma 4.5.6. The category Blpridem of idempotent blueprints is a reflective subcategory of Blpr
with reflection (−)idem =−⊗F1 B.

Proof. Let B be a blueprint and C an idempotent blueprint. Note that Bidem = B⊗F1 B is indeed
an idempotent blueprint since there exists a morphism B→ B⊗F1 B, which sends a to 1⊗a, cf.
Lemma 4.5.2, part (6). Thus (−)idem is well-defined.

The morphism ι : B→ B⊗F1 B that sends a to a⊗1 induces a map Φ : Hom(Bidem,C)→
Hom(B,C), which is functorial in B and C. By Lemma 4.5.2, part (6), there is a unique morphism
B→C. Since F1 is initial, there are unique morphisms F1→B and F1→B, and the compositions
F1 → B→ C and F1 → B→ C are equal. By the universal property of the tensor product, g
factors uniquely into ι◦ f for some morphism f : B⊗F1 B→C. This shows that Φ is a bijection
and that −⊗F1 B is a left adjoint to the embedding Blpridem→ Blpr.

We illustrate the subcategories considered in this section, as well as Mon, Rings and SRings
in Figure 4.1 where a containment of areas in the illustration indicates a containment of the
corresponding subcategories and an empty intersection of areas indicates that the trivial blueprint
is the only object in common.

Blpr
BlpridemBlprcanc

SRings

Blprinv

Mon

Rings

Figure 4.1: Some relevant subcategories of Blpr
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Definition 4.5.7. Let B be a blueprint. The unit field of B is the subblueprint B? of B whose
underlying monoid is (B?)• = {0}∪B× and whose ambient semiring (B?)+ is the subsemiring
of B+ generated by (B?)•.

Note that B? is a blue field unless B is the trivial blueprint, which yields B? = B = {0}. Let
Blpr? ⊂ Blpr be the full subcategory whose objects are blue fields and the trivial blueprint.

Lemma 4.5.8. The subcategory Blpr? is a coreflective subcategory of Blpr whose reflection
sends a blueprint to its unit field.

Proof. It is obvious that the unit field B? of a blueprint is a blue field and thus in Blpr?. Since
every blueprint morphism f : B→C maps 0 to 0 and B× to C×, we can restrict f to a morphism
f ? : B?→C? between the respective unit fields. This defines a functor (−)? : Blpr→ Blpr?.

For the same reason, the map Hom(B,C?)→ Hom(B,C) that sends a morphism f : B→C
from a blue field B to a blueprint C to its composition with the inclusion C?→C is a bijection.
This shows that (−)? is right adjoint to the inclusion of Blpr? into Blpr as a subcategory.

Remark 4.5.9. Lemma 4.5.8 stays in stark contrast to the analogous situation for (semi)fields and
(semi)rings. The Lemma implies that Blpr? is complete and cocomplete and that the colimit of
blue fields, calculated in Blpr, is again a blue field. A particular instance is that the tensor product
of blue fields is again a blue field. Of course, this also follows directly from the construction of
the tensor product as the set of pure tensors.

Exercise 4.5.10 (Partially additive blueprints). A partially additive blueprint is a blueprint B
such that the congruence kernel of the quotient map (B•)+→ B+ is generated by relations of the
form a∼∑b j with a,b j ∈ B•. Let Blprpadd be the full subcategory of partially additive blueprints
in Blpr.

Show that Blprpadd is a coreflective subcategory of Blpr whose reflection sends a blueprint B
to B•�cpadd where

cpadd =
〈

a≡ ∑b j |a,b j ∈ A and a = ∑b j in B+
〉
.

Show that Blprpadd contains Mon, SRings and Blprinv. Show that there exists nontrivial
blueprints in the intersections of Blprpadd with Blprcanc and with Blpridem, but that Blprpadd

neither contains nor is contained in either of Blprcanc and Blpridem.

Remark 4.5.11. The name “partially additive blueprint” is derived from the fact that a partially
additive blueprint B is characterized by its underlying monoid B• and the partial functions Σn :
Bn 99K B (for n> 1) that are defined as follows: the domain of Σn consists of all (a1, . . . ,an)∈ Bn

such that ∑ai ∈ B, and the value of such an element is Σn(a1, . . . ,an) = ∑ai.
This notion is closely connected to Deitmar’s theory of sesquiads in [Dei13]. Namely, a

sesquiad corresponds naturally to a partially additive and cancellative blueprint; cf. Remark 2.9
in [Lor15] for more details.

Some of the properties considered above are compatible with taking quotients. We will
explain some of such compatibilities in the following lemma.

Lemma 4.5.12. Let B be a blueprint and c be a congruence on B. Assume that B�c is nontrivial.
If B is a semiring, a blue field, with inverses or idempotent, then B�c is so, too.
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Proof. We proof the claim case by case. Let B = (R•,R) be a semiring. Then R•/c• = (R/c)•

and B�c= ((R/c)•,R/c) is a semiring.
Let B be a blue field, i.e. B× = B−{0}. Since B�c is nontrivial, the quotient map π : B→

B�c maps units a ∈ B× to nonzero elements π(a) of B�c. Thus π restricts to a surjection
B×→ (B�c)−{0}. Thus every nonzero element of B�c is of the form π(a) for some a ∈ B, and
π(a−1) is a multiplicative inverse of π(a). This shows that B�c is a blue field.

Let B be with inverses, which is equivalent to the existence of a morphism F12 → B by
Lemma 4.5.2, part (5). Thus we gain a morphism F12 → B→ B�c, which shows that B�c is
with inverses.

Let B be idempotent, which is equivalent to the existence of a morphism B→ B by Lemma
4.5.2, part (6). Thus we gain a morphism B→B→B�c, which shows that B�c is idempotent.

Exercise 4.5.13. Let B be a cancellative blueprint, I a k-ideal of B and c= c(I) the congruence
generated by I. Show that B�c is cancellative.

4.6 Ideals

We have seen already that the notion of an ideal has different generalizations to semirings as
congruences, ideals and k-ideals, depending on our purpose. The situation for monoids is similar.
For blueprints, there are even more meaningful generalizations. We have already introduced
congruences for blueprints. In this section, we define ideals, k-ideals and m-ideals and discuss
their properties.

Definition 4.6.1. Let B be a blueprint. An m-ideal or monoid ideal of B is an ideal I of the
monoid with zero B•. An ideal of B is an m-ideal I of B such that for all a1, . . . ,an ∈ I and b ∈ B,
an equality b = ∑ai in B+ implies b ∈ I. A k-ideal of B is an m-ideal I of B such that for all
a1, . . . ,an,b1 . . . ,bm ∈ I and c ∈ B, an equality ∑ai + c = ∑b j in B+ implies c ∈ I.

It is apparent from the definition that every k-ideal is an ideal and that every ideal is an
m-ideal. If B' Ablue for a monoid with zero A, then an m-ideal of B is the same as an ideal of A.
If B' Rblue for a semiring R, then a (k-)ideal of B is the same as a (k)-ideal of R.

Lemma 4.6.2. Let f : B→C be a blueprint morphism and I an (m/k-)ideal of C. Then f−1(I)
is an (m/k-)ideal of B. If I is prime, then f−1(I) is prime as well.

Proof. Let I be an m-ideal of C and J = f−1(I). By definition, I is an ideal of C•. By Lemma
3.5.5, J is an ideal of B•, i.e. it is an m-ideal of B. Lemma 3.5.5 also implies that J is prime if I
is so.

Let I be an ideal and consider b = ∑ai in B+ with b ∈ B and ai ∈ J. Then f (b) = ∑ f (ai)
with f (ai) ∈ I. Thus f (b) ∈ I since I is an ideal, and b ∈ J. This shows that J is an ideal.

Let I be a k-ideal and consider ∑ai + c = ∑b j in B+ with c ∈ B and ai,b j ∈ J. Then
∑ f (ai)+ f (c) = ∑ f (b j) with f (ai), f (b j) ∈ I. Thus f (c) ∈ I since I is a k-ideal, and c ∈ J.
This shows that J is a k-ideal.

Lemma 4.6.3. Let B be a blueprint and I a (k)-ideal of B+. Then I∩B• is a (k)-ideal of B. If I
is the (k)-ideal of B+ generated by a (k)-ideal J of B, then J = I∩B•.

Proof. We begin with a general observation. Let I be a (k)-ideal of B+. Then I is, in particular,
an ideal of the multiplicative monoid of B+ and J = I∩B• is the inverse image of I with respect
to the inclusion B•→ B+, which is a morphism of monoids with zero. Thus J is an m-ideal of B.
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Let I be an ideal of B+ and J = I∩B•. Consider an equality b = ∑ai in B+ with ai ∈ J and
b ∈ B. Then ∑ai ∈ I and b ∈ I. Thus b ∈ J = I∩B•, which shows that J is an ideal of B. This
proves the first claim for ideals.

Let I be a k-ideal of B+ and J = I ∩B•. Consider an equality ∑ai + c = ∑b j in B+ with
ai,b j ∈ J and c ∈ B. Then a = ∑ai and b = ∑b j are elements in the k-ideal I and thus a+ c = b
implies that c ∈ I. Thus c ∈ J = I∩B•, which shows that J is a (k)-ideal of B. This proves the
first claim for k-ideals.

Let J be an ideal of B and I = 〈J〉 the ideal of B+ generated by J. It is clear that J ⊂ I∩B.
By Corollary 2.5.4, we know that I = {∑aisi|ai ∈ R,si ∈ J}. Since J is an ideal, we have in fact
I = {∑ai|ai ∈ J}. We conclude that if b = ∑ai is in I∩B•, then b ∈ J since J is an ideal. Thus
J = I∩B• as claimed.

Let J be a (k)-ideal of B and I = 〈J〉k the (k)-ideal of B+ generated by J. Clearly, J ⊂ I∩B.
By Corollary 2.5.4, we know that I = {c ∈ B+|a+ c = b for some a,b ∈ 〈J〉}. Let c ∈ I ∩B•.
Then there are ai,b j ∈ J such that ∑ai+c = ∑b j by the characterization of I. Since J is a k-ideal
of B, we conclude that c ∈ J and thus J = I ∩B• as claimed. This concludes the proof of the
lemma.

As a consequence, we derive in the following statement an explicit description for the
smallest (m/k-)ideal of a blueprint B containing a given subset S. We call this (m/k-)ideal, the
(m/k-)ideal generated by S.

Corollary 4.6.4. Let B be a blueprint and S a subset of B. Then the m-ideal generated by S is

〈S〉m =
{

as
∣∣a ∈ B,s ∈ S∪{0}

}
,

the ideal generated by S is
〈S〉 =

{
∑ai

∣∣ai ∈ 〈S〉m
}

and the k-ideal generated by S is

〈S〉k =
{

c ∈ B
∣∣a+ c = b in B+ for some a,b ∈ 〈S〉

}
.

Proof. The claim for m-ideals follows from the corresponding fact for monoids with zero, cf.
section 3.4. The claim for ideals and k-ideals follows from combining Lemma 4.6.3 with
Corollary 2.5.4.

Another consequence is the following.

Corollary 4.6.5. Let B be a blueprint whose ambient semiring B+ is a ring. Then every ideal of
B is a k-ideal.

Proof. Let I be an ideal of B and I+ the ideal of B+ generated by I. Then I+ is a k-ideal of B+

since B+ is a ring and thus I = I+∩B is a k-ideal of B by Lemma 4.6.3.

Exercise 4.6.6. Let B be a cancellative blueprint and I an ideal of B. Consider the ring B+
Z =

B+⊗+NZ= (B⊗F1 F12)+ as a blueprint and let ι : B→ B+
Z the morphism that sends a to a⊗1.

Let J = 〈ι(I)〉 be the ideal of B+
Z that is generated by ι(I). Show that I is a k-ideal of B if and

only if I = ι−1(J). Hint: Use Exercise 2.5.8 and Lemma 4.6.3.

Definition 4.6.7. Let f : B→ C be a morphism of blueprints. The kernel of f is the subset
ker f = f−1(0) of B.
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Proposition 4.6.8. The kernel of a blueprint morphism is a k-ideal and every k-ideal appears as
the kernel of a blueprint morphism. More precisely, let B be a blueprint, I a k-ideal of B and
c = c(I) the congruence on B+ generated by I. Then I is the kernel of the quotient morphism
π : B→ B�c.

Proof. Let f : B→ C be a blueprint morphism and f+ : B→ C the morphism between the
ambient semirings. By Proposition 2.5.3, ker f+ is a k-ideal of the semiring B+ and by Lemma
4.6.3, ker f = ker f+∩B is a k-ideal of B.

Let B be a blueprint, I a k-ideal of B and I+ = {∑ai|ai ∈ I} the ideal of B+ generated by I.
Then c= c(I) is contained in c(I+). By Proposition 2.5.3, a∼c(I+) b implies a+ c = b+d for
some c,d ∈ I+, i.e. c = ∑ck and d = ∑dl for some ck,dl ∈ I. Since ck ∼c 0∼c dl , we have

a ∼c a+∑ck = b+∑dl ∼c b,

which shows that c= c(I+).
Let π : B→ B�c be the quotient morphism. Using Proposition 2.5.3 once again, we see that

kerπ+ is the k-ideal of B+ generated by I+. Since I+ is generated by I as an ideal, kerπ+ is
generated by I as a k-ideal. Thus by Lemma 4.6.3, I = kerπ+∩B = kerπ, as claimed.

We summarize the relations between the different notions of ideals and congruences for
semirings, monoids with zero and blueprints in the following picture:

{
ideals of B•

} {
congruences on B•

}

{
m-ideals of B

} {
ideals of B

} {
k-ideals of B

} {
congruences on B

}

{
ideals of B+

} {
k-ideals of B+

} {
congruences on B+

}

1:1

1:1

Exercise 4.6.9. Conclude from the previous results that for every pair of an injection i and a
surjection p between two sets in the above diagram, p◦ i is the identity. Show that “paths in the
same diagonal direction” commute, i.e. every subdiagram that does neither contain both an up
arrow and a down arrow nor contain both a left arrow and a right arrow is commutative.

4.7 Prime ideals

Definition 4.7.1. Let B be a blueprint. An (m/k-)ideal I of B is proper if I 6= B. It is prime if
S = B− I is a multiplicative subset. An (m/k-)ideal I is maximal if it is proper and I ⊂ J implies
I = J for every other proper (m/k-)ideal J of B.

Note that as in the case of semirings, an m-ideal I of B is proper or prime as an m-ideal if and
only if it is proper or prime, respectively, as an ideal or a as k-ideal. Moreover, every k-ideal that
is a maximal ideal is a maximal k-ideal and every ideal that is a maximal m-ideal is a maximal
ideal. However, a maximal k-ideal does not need to be a maximal ideal, and a maximal ideal
does not need to be a maximal m-ideal; cf. Example 4.7.8.

Note that similar to the case of monoids with zero, every blueprint B has a unique maximal
m-ideal, which is m= B−B×. In this sense, every blueprint is local (with respect to m-ideals).
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Lemma 4.7.2. Let B be a blueprint. Then every maximal (m/k-)ideal of B is prime.

Proof. The claim is immediate for m-ideals since m= B−B× is the unique maximal m-ideal
and the product of any element of B by a non-unit is a non-unit.

The proof for ideals and k-ideals is analogous to the case of semirings. We repeat the
argument in brevity. Let m be a maximal (k-)ideal and ab ∈m with a /∈m, i.e. B is generated by
S =m∪{a} as a (k-)ideal. We want to show that b ∈m.

In the case that m is a maximal ideal, Corollary 4.6.4 implies that 1 = ∑ekck for some ck ∈ S
and ek ∈ B. Since bck ∈m, we obtain b = ∑bekck ∈m, which shows that m is prime.

In the case that m is a maximal k-ideal, Corollary 4.6.4 implies that ∑ekck +1 = ∑ fldl for
some ck,dl ∈ S and ek, fk ∈ B and thus ∑bekck +b = ∑b fldl . Since bekck,b fldl ∈m and m is a
k-ideal, we conclude that b ∈m and that m is prime.

Exercise 4.7.3. Let B be a blueprint and I a proper (m/k-)ideal of B. Then I is contained in a
maximal (m/k-)ideal of B. In particular, every nontrivial blueprint has a maximal (m/k-)ideal.
Hint: The claims are obvious for m-ideals. For ideals and k-ideals, it follows from a standard
application of the lemma of Zorn.

Lemma 4.7.4. Let f : B→C be a morphism of blueprints and I an m-ideal of C. Then f−1(I)
is an m-ideal of B. If I is prime, an ideal or a k-ideal, then f−1(I) is so too.

Proof. The claim about m-ideals and for prime m-ideals follows from Lemma 3.5.5. The claim
about ideals and k-ideals follows from combining Lemma 4.6.3 with Lemma 2.6.7.

Exercise 4.7.5. Let B be a blueprint, I a k-ideal and c = c(I) the congruence generated by I.
Show that I is prime if and only if B�c is without zero divisors. Find examples of a blueprint
B and an ideal J of B for: (1) J is prime and B�c(J) has zero divisors; (2) J is not prime and
B�c(J) is without zero divisors.

Lemma 4.7.6. Let B be a blueprint and S⊂ B a subset that generates B• over B×, i.e. for every
b ∈ B, there are an element a ∈ B× and elements s1, . . . ,sn ∈ S∪{0} such that b = as1 · · ·sn.
Then every prime m-ideal p of B is generated by a subset J of S, i.e. p= 〈J〉m.

Proof. Let J = S∩ p. Then clearly 〈J〉m ⊂ p. Consider b ∈ B−〈J〉m, i.e. b = as1, . . . ,sn for
some a ∈ B× and s1, . . . ,sn ∈ S− J. By the definition of J and since B× ∩ p = /0, we have
a,s1, . . . ,sn ∈ B−p. Since B−p is a multiplicative set, b = as1, . . . ,sn ∈ B−p, which shows that
p= 〈J〉m as claimed.

Example 4.7.7. Let k be a blue field and B = k[T1, . . . ,Tn]. Then B• is generated by S =
{T1, . . . ,Tn} over B× and thus every prime ideal of B is generated by a subset of S. In this
example, it is easily verified that for every subset J of S, the m-ideal pJ = 〈J〉m is prime and even
a k-ideal.

More generally, if k is a blue field and B = k[T1, . . . ,Tn]�c, then we have inclusions
{

prime k-ideals of B
}
⊂
{

prime ideals of B
}
⊂
{

prime m-ideals of B
}
⊂
{

subsets of S
}

where S = {T1, . . . ,Tn}.

Example 4.7.8. The following example witnesses the digression between maximal m-ideals,
maximal ideals and maximal k-ideals. Let B = F1[T1,T2]�〈T1+T1 ≡ 1,T2+1≡ T2〉. By Lemma
4.7.2, every maximal (m/k-)ideal of B is prime. By Lemma 4.7.6, every prime ideal of B is
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generated by a subset of the generators T1 and T2 of B over the blue field F1. Thus it suffices to
consider the (m/k-)ideals of B generated by the empty set, {T1}, {T2} and {T1,T2}.

Since the unit group B× = {1} does contain neither T1 nor T2, the unique maximal m-ideal
of B is B−B× = 〈T1,T2〉m. If I is an ideal of B that contains T1, then 1 = T1 +T1 is also in I,
i.e. I = B is not proper. However, 〈T2〉= T2 ·B is a proper ideal since there is no relation of the
form ∑ai = 1 in B+ with ai ∈ 〈T2〉. Thus 〈T2〉= 〈T2〉m is the unique maximal ideal of B. If I is a
k-ideal of B that contains T2, then it also contains 1 since T2 +1 = T2. Thus 〈T2〉k is not proper.
We conclude that the only prime k-ideal is 〈 /0〉k = {0}, which is henceforth the unique maximal
k-ideal.

We see in this example that we have proper inclusions of {0}( 〈T2〉( 〈T1,T2〉m, and that
the three different notions of maximality do not coincide.

4.8 Localizations

Definition 4.8.1. Let B be a blueprint and S a multiplicative subset of B. The localization of
B at S is the blueprint S−1B = (S−1B•,S−1B+). We write B[h−1] = S−1B if S = {hi}i∈N for an
element h ∈ B. We write Bp = S−1B if S = B− p for a prime m-ideal p. If S = B−{0} is a
multiplicative subset of B, then we define the fraction field of B as FracB = S−1B.

Note that S−1B is indeed a blueprint. First of all, S is clearly a multiplicative subset of B+

with respect to the inclusion B ↪→ B+. Secondly, the induced map S−1B•→ S−1B+ is injective
since for elements a,a′ ∈ B and s,s′ ∈ S, the fractions are equal in S−1B if and only if there is
a t ∈ S such that tsa′ = ts′a, which, in turn, is equivalent to a

s = a′
s′ in S−1B+. This identifies

S−1B• with a submonoid of S−1B+, which clearly contains the zero 0
1 and the one 1

1 and which
generates S−1B+ as a semiring.

Note further that (S−1)• = S−1(B•) and (S−1)+ = S−1(B+) by the definition of the localiza-
tion S−1B. Therefore we can write S−1B• and S−1B+ without ambiguity. Finally note that the
localization of B at S comes with the blueprint morphism ιS : B→ S−1B that sends a to a

1 . This
morphism satisfies ιS(S)⊂ (S−1B)×.

Example 4.8.2. We define B[T±1] as B[T ][T−1] = S−1B[T ] where S = {T i}i∈N. Then we
have B[T ]p = B[T ] for p = 〈T 〉 and B[T ]p = B[T±1] if p = {0}. If B is a blue field, then
B[T±1] = FracB[T ].

Exercise 4.8.3. (Universal property of localizations) Let B be a blueprint, S a multiplicative
subset and ιS : B→ S−1B the localization map. Show that for every blueprint morphism f : B→C
such that f (S)⊂C×, there is a unique morphism fS : S−1B→C such that f = fS ◦ ιS.

Exercise 4.8.4. (Fraction fields) Let B be a blueprint and S = B−{0}. Show that S is a
multiplicative set if and only if B is nontrivial and without zero divisors. In case that S is a
multiplicative set, show that the localization map B→ FracB is injective if and only if B is
integral.

Localization is a very harmless operation on blueprints in the sense that it behaves well with
basically all properties of blueprints that we have encountered in this chapter. Note that S−1B is
trivial if 0 ∈ S, which is why we exclude this case in the following statement.

Lemma 4.8.5. Let B be a blueprint and S a multplicative subset of B that does not contain 0. If
B is a monoid, a semiring, a blue field, integral, without zero divisors, with inverses, idempotent
or cancellative, then S−1B is so, too.
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Proof. We prove the claim case by case. Let B= (A,A+) be a monoid. Then S−1(A+) = (S−1A)+

and thus S−1B = (S−1A,(S−1A)+) is a monoid.
Let B = (R•,R) be a semiring. Then S−1(R•) = (S−1R)• and thus S−1R = ((S−1R)•,S−1R)

is a semiring.
Let B be a blue field. Then S−1B = B is a blue field.
Let B be integral. By Exercise 4.8.4, B⊂ S−1B⊂ FracB, which shows that S−1B is integral.
Let B without zero divisors and consider a product a

s · b
t =

0
1 . Then there is a w ∈ S such that

wab = wst ·0 = 0 in B. Since w 6= 0, we have a = or b = 0. Thus a
s =

0
1 or b

t =
0
1 , which shows

that S−1B is without zero divisors.
Let B be with inverses, which is equivalent to the existence of a morphism F12 → B by

Lemma 4.5.2, part (5). Thus we gain a morphism F12 → B→ S−1B, which shows that S−1B is
with inverses.

Let B be idempotent, which is equivalent to the existence of a morphism B→ B by Lemma
4.5.2, part (6). Thus we gain a morphism B→ B→ S−1B, which shows that S−1B is idempotent.

Let B be cancellative and consider an equality x
s +

z
v =

y
t +

z
v in S−1B. Then there is a w ∈ S

such that wtvx+wstz = wsvy+wstz in B. Since B is cancellative, we have wtvx = wsvy in B.
Thus x

s =
y
t in S−1B, which shows that S−1B is cancellative.

Exercise 4.8.6. Let B be a partially additive blueprint, cf. Exercise 4.5.10, and S a multplicative
subset of B. Show that S−1B is partially additive.

Lemma 4.8.7. Let B be a blueprint, S a multiplicative subset and ιS : B→ S−1B the localization
map. Let I be an (m/k-)ideal of B. Then

S−1I =
{ a

s ∈ S−1B
∣∣a ∈ I,s ∈ S

}

is the (m/k-)ideal of S−1B that is generated by ιS(I).

Proof. Clearly we have ιS(I)⊂ S−1I ⊂ 〈I〉m. Thus it suffices to show that S−1I is an (m/k-)ideal
if I is so.

Let I be an m-ideal of B, which is the same as an ideal of the monoid B•. By Lemma 3.6.2,
S−1I is an ideal of the monoid S−1B•, which means that it is an m-ideal of S−1B.

Let I be an ideal of B. We know already that S−1I is an m-ideal of S−1B. Consider an equality
a
s = ∑

ai
si

in S−1B+ with a ∈ B, ai ∈ I and s,si ∈ S. This means that there is a t ∈ S such that

t
(
∏
all i

si
)
a = ∑

i
ts
(
∏
j 6=i

s j
)
ai

holds in B+. Since all terms ts(∏ j 6=i s j)ai are in I, also t(∏si)a is in I. Thus a
s = t(∏si)a

t(∏si)s
is in

S−1I. This shows that S−1I is an ideal of S−1B.
Let I be a k-ideal of B. We know already that S−1I is an m-ideal of S−1B. Consider an

equality ∑
ai
si
+ a

s = ∑
a′j
s′j

in S−1B+ with a ∈ B, ai,a′j ∈ I and s,si,s′j ∈ S. This means that there is
a t ∈ S such that

∑
i

ts
(
∏
k 6=i

sk
)(

∏
all j

s′j
)
ai + t

(
∏
all i

si
)(

∏
all j

s′j
)
a = ∑

j
ts
(
∏
all i

si
)(

∏
k 6= j

s′k
)
a′j

holds in B+. Since all terms ts(∏k 6=i sk)(∏s′j)ai and ts(∏si)(∏k 6= j s′k)a
′
j are in I, also t(∏si)(∏s′j)a

is in I. Thus a
s =

t(∏si)(∏s′j)a
t(∏si)(∏s′j)s

is in S−1I. This shows that S−1I is a k-ideal of S−1B, which con-
cludes the proof of the lemma.



4.8. Localizations 51

Proposition 4.8.8. Let B be a blueprint, S a multiplicative subset of B and ιS : B→ S−1B the
localization morphism. Then the maps

{
prime m-ideals p of B with p∩S = /0

}
←→

{
prime m-ideals of S−1B

}

p
Φ7−→ S−1p

ι−1
S (q)

Ψ 7−→ q

are mutually inverse bijections. A prime m-ideal p of B with p∩S = /0 is a (k-)ideal if and only if
S−1p is a (k-)ideal.

Proof. The claim for m-ideals follows from Proposition 3.6.4. The claim for (k-)ideals follows
from Lemmas 4.6.2 and 4.8.7.

Let B be a blueprint, p a prime ideal of B and S = B−p. Then S−1p is the complement of
the units of S−1B and therefore its unique maximal ideal.

Definition 4.8.9. Let B be a blueprint and p a prime ideal of B. The residue field at p is the
blueprint k(p) = Bp�c(S−1p) where S is the complement of p in B and c(S−1p) is the congruence
on B+

p that is generated by S−1p.

Let p be a prime ideal of a blueprint B. Then the residue field at p comes with a canonical
morphism B→ k(p), which is the composition of the localization map B→ Bp with the quotient
map Bp→ k(p). Note that the residue field k(p) can be the trivial semiring in case that p is not a
k-ideal. More precisely, we have the following.

Corollary 4.8.10. Let B be a blueprint, p a prime m-ideal of B and S = B−p. Then the residue
field k(p) is a blue field if p is a k-ideal and trivial if not.

Proof. First assume that p is a prime k-ideal. Then p is the maximal prime ideal that does
not intersect S and thus m= S−1p is the unique maximal of S−1B. By Proposition 2.7.5, m is
a k-ideal. Thus the kernel of S−1B→ k(p) is m, which shows that k(p) is not trivial. Since
(S−1B)× = S−1B−m, we see that (S−1B)× → k(p)−{0} is surjective, which shows that all
nonzero elements of k(p) are invertible, i.e. k(p) is a blue field.

Next assume that p is not a k-ideal. By Proposition 2.7.5, m= S−1p is not a k-ideal, which
means that the kernel of S−1B→ k(p) is strictly larger than m and therefore contains a unit of
S−1B. This shows that k(x) must be trivial.

Corollary 4.8.11. Let B be a nontrivial blueprint. Then there exists a morphism B→ k into a
blue field k.

Proof. By Exercise 4.7.3, B has a maximal k-ideal m. By Lemma 4.7.2, m is prime. By Corollary
4.8.10, the residue field k(m) is a blue field, which provides a morphism B→ k(m) from B into
a blue field k(m).

Corollary 4.8.12. Let B be a blueprint and p be a prime (k-)ideal of B. Then there is a prime
(k-)ideal q of B+ such that p= q∩B.

Proof. Consider the commutative diagram

B Bp

B+ (Bp)
+

ιp

α αp

ι+p
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of blueprint morphisms. Let S = B− p. By Proposition 4.8.8, S−1p is the unique maximal
(k-)ideal of Bp. Let I be the (k-)ideal of (Bp)

+ generated by αp(S−1p). By Lemma 4.6.3, we
have S−1p= I∩Bp, which shows that I is a proper ideal of Bp)

+. Exercise 4.7.3 shows that I is
contained in a maximal (k-)ideal m of (Bp)

+, which is prime by Lemma 4.7.2. Thus α−1
p (m) is a

prime (k-)ideal by Lemma 4.6.2 and thus S−1p⊂ α−1
p (m)( Bp. By the maximality of S−1p, we

conclude that S−1p= α−1
p (m).

Using Lemma 4.6.2 once again, we see that q= (ι+p )
−1(m) is a prime (k-)ideal of B+. By the

definition of q and the commutativity of the diagram, we have that p= ι−1
p

(
α−1
p (m)

)
= α−1(q),

which concludes the proof of the corollary.

Exercise 4.8.13. Let B be a cancellative blueprint and p a prime k-ideal of B. Show that there is
a prime ideal q of B+

Z such that p= q∩B. Hint: A slight alteration of the argument in the proof
of Corollary 4.8.12, involving Lemmas 4.5.2 and 4.8.5 and Exercise 4.6.6, leads to success.
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